
Data security

Pierangela Samarati
Dipartimento di Tecnologie dell’Informazione

Università di Milano
e mail: samarati@dti.unimi.it

1 c
�

Pierangela Samarati

Security

Guaranteeing security means protecting information

� Secrecy (Confidentiality) Information can be released – directly or

indirectly – only to users authorized to see it.

Privacy: socially defined ability of an individual to determine

whether, when, and to whom personal information is to be

released

� Integrity Information must not be improperly modified, deleted, and

tampered.

� Availability (no denials-of-service) Users must not be prevented from

accessing data for which they have necessary permissions.

2 c
�

Pierangela Samarati

Security services
� Identification and Authentication provide the system with the ability of

identifying its users and confirming their identity.

� Access Control evaluates access requests to the resources by the

authenticated users and, based on some access rules, it determines

whether they must be granted or denied.

– Access control controls only direct access.

– It may be enriched with inference, information flow, and

non-interference controls

� Audit provides a post facto evaluation of the requests and the

accesses occurred to determine whether violations have occurred or

have been attempted.

� Encryption ensures that any data stored in the system or sent over

the network can be deciphered only by the intended recipient.

3 c
�

Pierangela Samarati

Security services - The global picture

Reference

Monitor

Access
rules

ADMINISTRATION

ENCRYPTION

ACCESS CONTROLAUTHENTICATION

TARGET SYSTEM

LOGGING

Security Administrator

User

Data

Auditor

AUDITING

Security violations

4 c
�

Pierangela Samarati

Authentication
� Establishes the identity of a “party” to another.

� Parties can be users or machines.

� Often bi-directional (mutual) authentication is requested.

Authentication of a computer to a user can be needed to prevent

spoofing attacks in which a computer masquerades as anotherone

(e.g., to acquire the password of the users).

� Often combined authentication “user-to-computer” and

“computer-to-computer” is needed.

� It is some sence the primary security service.

– Correctness of the access control relies on a correct

authentication.

– Correctness of intrusion/violation control bases on correct

authentication.

5 c
�

Pierangela Samarati

User to computer authentication

Can be based on:

� something the user knows (e.g., password)

� something the user has (e.g., magnetic card)

� something the user is, established on biometric characteristics (es.,

fingerprints, voice print, retinal prints).

or a combination of the above.

6 c
�

Pierangela Samarati

Password-based authentication
� Based on pairs:

– login: the user identifies herself

– password: the user gives the proofs of her identity

� Authentication method older and more widely used

– simple

– cheap

– easily implementable

but

– also the weakest

7 c
�

Pierangela Samarati

Vulnerabilities of passwords
� Often passwords can be:

– easily guessed (guessing)

– read by people observing the legitimate users typing it in

(snooping)

– observed by third parties when travelling on the network (sniffed)

– acquired by third parties impersonating the login interface

(spoofing)

� Anybody that acquires the password of a user can impersonate the

user (masquerading) in getting access to the system.

8 c
�

Pierangela Samarati

Vulnerabilities of passwords

One of the primary causes of password vulnerability is due to the users

that do not choose or manage them properly.

9 c
�

Pierangela Samarati

Causes of password vulnerability

The first step to limit password vulnerability is good password

managament.

Often passwords are vulnerable because users do not put enough care:

� do not change password for a long time

� share passwords with colleagues and friends

� choose “weak” passwords because they are easy to remember (e.g.,

name or date of births of relatives or pets)

� use the same password on different computers

� write the passwords on paper to be sure to not forget it.

10 c
�

Pierangela Samarati

Choosing passwords

Good password management requires users to
� change their password often
� keep their passwords private
� choose passwords that cannot be easily guessed.

A good password should

– be of at least 8 characters and use a large set of characters
(alphanumeric and special characters).

– be not easily guessable and do not correspond to words in
dictionaries (or slight variations of them).

– easy to remember, otherwise users
� would write it down
� would forget it (denials-of-service)

...... Unfortunately, often these basic principles are not followed.

11 c
�

Pierangela Samarati

Control on passwords

Several systems use automatic controls to avoid weak password.

� restriction on the lenght and on the minimum number of characters,

requiring mixing numerical and alphanumerical characters

� control against dictionaries and rejection of password belonging to the

natural language (to prevent dictionary attacks).

� maximum time of validity for passwords (users are required to change

their password when it expires).

– keep history of recent passwords

– keep minimum time of validity

12 c
�

Pierangela Samarati

Controls on passwords

In alternative

� the password can be chosen by the system.

– non always well accepted (password can be difficult to remember)

– problem of password distribution.

� use of sequences one-time-password (often users write them down to

remember them).

13 c
�

Pierangela Samarati

Authentication based on possess
� Based on posses by users of tokens (of a size of a credit card).

� Each token has a cryptographic key (stored in the token) that can be

used to prove the identity of the token to a computer.

� Tokens are safer than passwords

– by keeping control on the tokens users maintain control on their

identity

14 c
�

Pierangela Samarati

Vulnerabilities of tokens
� Token-based authentication proves only the identity of the token, not

the identity of the user

– tokens can be lost, stole, forged

– everybody who acquires a token can impersonate the user

� often token-based authentication can be combined with

authentication based on knowledge.

– To masquerade as a user third parties need both, to have the

token and to know the password.

– Eg., ATM: ATM card + ATM code

15 c
�

Pierangela Samarati

Token-based authentication

Two kinds of token:

� memory card: have memory but do not have processing power.

– cannot check the password of encrypt it for transmission.

– the password is transmitted in the clear.
� vulnerable to sniffing attacks
� require the user to trust the authentication server

� smart token: have processing capabilities.

16 c
�

Pierangela Samarati

Authentication based on user characteristics
� Based on biometric characteristics of the user:

– physical characteristics: fingerprints, shape of the hand, prints of

the retin, or of the face,

– behavioral characteristics: handwritten signature, voice,“keystroke

dynamic”....

� Requires an initial enrollment phase that

– performs several measures on the characteristic

– defines a profile (template)

17 c
�

Pierangela Samarati

Authentication based on characteristics of the user
� Authentication: comparison between the characteristic measured for

the user with the stored template.

� Authentication succeeds if they correspond (provided a tolerance

interval)

� We cannot require exact match.

� It is important to verify the tolerance level so to maximize successes

(correct authentication of legitimate users) and minimize failures.

18 c
�

Pierangela Samarati

Biometric authentication
� Even if less accurate is the strongest form of authentication

– eliminates vulnerability due to impersonation.

� Limited use

– expensive (need expensive hardware)

– intrusive (not always well accepted)
� Retinal scanners are one of the most accurate measures but

there are debates on possible eye damages thy can cause/

– political and social debates for potential threats to privacy.

19 c
�

Pierangela Samarati

Which authentication technique should be used?
� There are “stronger” techniques, not “better”, techniques

– trade-off between costs and benefits: weaker methods can work

well in several cases

– Passwords are (and will be for a while) the authentication

technique most used.

� From a purely technical point of view the best authentication method

is given by the combination of:

– biometric authentication between user and token

– mutual cryptography-based authentication between token and

system.

20 c
�

Pierangela Samarati

Access Control vs other services

Correctness of access control rests on

� Proper user identification/authentication � No one should be able to

acquire the privileges of someone else

� Correctness of the authorizations against which access is evaluated

(which must be protected from improper modifications)

Authentication also necessary for accountability and establishing

responsability.

Each principal (logged subject) should correspond to a single user � �
no shared accounts

21 c
�

Pierangela Samarati

Policies, Models, and Mechanisms

In studying access control, it is useful to separate
� Policy Defines (high-level) guidelines and rules describing the

accesses to be authorized by the system (e.g., closed vs open
policies)

Often the term policy is abused and used to refer to actual
authorizations (e.g., Employees can read bullettin-board)

� Mechanism Implements the policies via low level (software and
hardware) functions

Such separation allows us to
� Discuss access requirements independent of their implementation
� Compare different access control policies as well as different

mechanisms that enforce the same policy
� Design mechanisms able to enforce multiple policies

22 c
�

Pierangela Samarati

Access control mechanisms

Based on the definition of a reference monitor that must be

� tamper-proof: cannot be altered

� non-bypassable: mediates all accesses to the system and its

resources

� security kernel confined in a limited part of the system (scattering

security functions all over the system implies all the code must be

verified)

� small enough to be susceptible of rigorous verification methods

23 c
�

Pierangela Samarati

Access control mechanisms – 2

The implementation of a correct mechanism is far from being trivial and is

complicated by need to cope with

� storage channels (residue problem) Storage elements such as

memory pages and disk sectors must be cleared before being

released to a new subject, to prevent data scavenging

� covert channels Channels that are not intended for information

transfer (e.g., program’s effect on the system load) that can be

exploited to infer information

Assurance How well does the mechanism do?

24 c
�

Pierangela Samarati

Access control development process

Multi-phase approach from policies to mechanism

Passes through the definition of an

� Access control model that formally defines the access control

specification and enforcement. The model must be

– complete: It should encompass all the security requirements that

must be represented

– consistent: Free of contradictions; e.g., it cannot both deny and

grant an access at the same time

The definition of a formal model allows the proof of properties on the

system. By proving that the model is “secure” and that the mechanism

correctly implements the model we can argue that the system is “secure”

(according to our definition of secure).

25 c
�

Pierangela Samarati

Security policies

Security policies can be distinguished in

Access control policies: define who can (or cannot) access the

resources. Three main classes:
� Discretionary (DAC) policies
� Mandatory (MAC) policies
� Role-based (RBAC) policies

Administrative policies: define who can specify authorizations/rules

governing access control

Coupled with DAC and RBAC

26 c
�

Pierangela Samarati

Discretionary policies

Enforce access control on the basis of

� the identity of the requestors (or on properties they have)

� and explicit access rules that establish who can or cannot execute

which actions on which resources

They are called discretionary as users can be given the ability of passing

on their rights to other users (granting and revocation of rights regulated

by an administrative policy)

27 c
�

Pierangela Samarati

Access Matrix Model

It provides a framework for describing protection systems.

Often reported as HRU model (from later formalization by Harrison,

Ruzzo, and Ullmann)

Called access matrix since the authorization state (or protection system)

is represented as a matrix

Abstract representation of protection system found in real systems (many

subsequent systems may be classified as access matrix-based)

28 c
�

Pierangela Samarati

Access Matrix Model – protection state

State of the system defined by a triple (S,O,A) where

� � set of subjects (who can exercise privileges)

� � set of objects (on which privileges can be exercised) subjects may

be considered as objects, in which case � � �
� � access matrix, where

– rows correspond to subjects

– columns correspond to objects

– � �����
	�� reports the privileges of � on 	

Changes of states via commands calling primitive operations:

enter
 into � �����
	�� , delete
 from � �����
	�� , create subject ��� , destroy
subject ��� , create object 	�� , destroy object 	��

29 c
�

Pierangela Samarati

Access Matrix – Example

File 1 File 2 File 3 Program 1

own read execute

Ann read write

write

Bob read read

write

Carl read execute

read

30 c
�

Pierangela Samarati

Commands

Changes to the state of a system modeled by a set of commands of the

form

command � �������	�	�
�	���
���
if � � in � � ���������������

and��� in � � � � � ��� �!� �
and

...........�#" in � � � �%$ ��� �!$ �
then &�' �

&�' �
...........&�')(

end

+* �-,.,/, �
�0 are access modes; � * �1,/,/, � � 0 and 	 * �-,.,/, �
	 0 are integers

between 1 and 2 . If 3 =0, the command has no conditional part.

31 c
�

Pierangela Samarati

Commands – Examples

command CREATE(subj,file)

create object file

enter Own into � � subj,file � end.

command CONFERread(owner,friend,file)

if Own in � � owner,file �
then enter Read into � � friend,file � end.

command REVOKEread(subj,exfriend,file)

if Own in � � subj,file �
then delete Read from � � exfriend,file � end.

32 c
�

Pierangela Samarati

Transfer of privileges

Delegation of authority can be accomplished by attaching flags to

privileges (e.g., � copy flag; � transfer only flag)

� copy flag (*): the subject can transfer the privilege to others

command TRANSFERread(subj,friend,file)

if Read* in � � subj,file �
then enter Read into � � friend,file � end.

� transfer-only flag (+): the subject can transfer to other the privilege

(and the flag on it); but so doing it loses the authorization.

command TRANSFER-ONLYread(subj,friend,file)

if Read+ in � � subj,file �
then delete Read+ from � � subj,file �

enter Read+ from � � friend,file � end.

33 c
�

Pierangela Samarati

State transitions

The execution of a command � ��� * �-,.,/, � ����� on a system state

�
� � � � � � �

causes the transition to a state � such that:

� � 	�

��� � * 	�

���� ,/,., 	�

� �� � � �

where

� 	���� * ,-,-, 	����� are primitive operations in �
� the formal parameters

��� * �1,/,/, � � � � in the definition are replaced by

the actual parameters supplied at the command call.

If the conditional part of the command is not verified, then the command

has no effect and � � .

34 c
�

Pierangela Samarati

The safety problem

Concerned with the propagation of privileges. Problem of giving an
answer to the question:

� Given a system with initial configuration � does there exist a
sequence of requests that executed on � produces a state �
where � appears in a cell � �����
	�� that did not have it in � ?

(Not all leakages of rights are bad � � trustworthy subjects are ignored
in the analysis).

Some results:
� undecidable in general (reduced to the helting problem of a Turing

machine)
� decidable for mono-operational command (i.e., containing a single

primitive operation)
� decidable when subjects and objects are finite

35 c
�

Pierangela Samarati

Access Matrix – implementation

Matrix is generally large and sparse. Storing the matrix � waste of

memory space

Alternative approaches

� Authorization table Store table of non-null triples (s,o,a). Generally

used in DBMS.

� Access control lists (ACLs) Store by column.

� Capability lists (tickets) Store by row.

36 c
�

Pierangela Samarati

Authorization Tables

User Access mode Object
Ann own File 1

Ann read File 1

Ann write File 1

Ann read File 2

Ann write File 2

Ann execute Program 1

Bob read File 1

Bob read File 2

Bob write File 2

Carl read File 2

Carl execute Program 1

Carl read Program 1

37 c
�

Pierangela Samarati

Access control lists vs. Capability Lists
File 1 Ann

own
read
write

Ann

read

Bob

CarlFile 2

File 3

write
read

read

read

write

Ann

execute read
execute

CarlProgram 1

Bob

Program 1

execute
own
read
write

File 1 File 2

read
write

File 1

read
writeread

File 3

File 2

read

Ann

Bob

Carl Program 1

execute
read

38 c
�

Pierangela Samarati

ACL vs Capabilities
� ACLs require authentication of subjects

� Capabilities do not require authentication of subjects, but require

unforgeability and control of propagation of capabilities.

� ACLs provide superior for access control and revocation on a

per-object basis.

� Capabilities provide superior for access control and revocation on a

per-subject basis.

� The per-object basis usually wins out so most systems are based on

ACLs.

� Some systems use abbreviated form of ACL (e.g., Unix 9 bits)

39 c
�

Pierangela Samarati

DAC weaknesses

Discretionary access controls constraint only direct access

No control on what happens to information once released

� � DAC is vulnerable from Trojan horses exploting access

privileges of calling subject

Trojan Horse: Rogue software. It contains a hidden code that performs

(unlegitimate) functions not known to the caller.

Viruses and logic bombs are usually transmitted in the form of Trojan

Horse

40 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane ownerJohn�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane owner John�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane owner John�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane owner John�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane owner John�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane owner John�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

The Trojan Horse problem

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

read Market

write Stolen

� �

Aug. 00; product X; price 7,000
Dec. 00; product Y; price 3,500
Jan. 01; product Z; price 1,200

File Market

Jane �invokes
Application

File Stolen

owner Jane owner John�
Jane,write,Stolen �

41 c
�

Pierangela Samarati

Mandatory policies

Mandatory access control: Impose restrictions on information flow which

cannot be bypassed by Trojan Horses.

Makes a distinction between users and subjects operating on their behalf.

� User Human being

� Subject Process in the system (program in execution). It operates on

behalf of a user.

While users may be trusted not to behave improperly, the programs they

execute are not.

42 c
�

Pierangela Samarati

Mandatory policies

Based on classification of subjects and objects.

Two classes of policies

� Secrecy-based (e.g., Bell La Padula model)

� Integrity-based (e.g., Biba model)

43 c
�

Pierangela Samarati

Security classification

Security class usually formed by two components
� Security level element of a hierarchical set of elements. E.g.,

TopSecret(TS), Secret(S), Confidential(C), Unclassified(U)� � � � � � � �
Crucial (C), Very Important (VI), Important (I)

� � � � � �
� Categories set of a non-hierarchical set of elements (e.g.,

Administrative, Financial). It may partion different area of competence
within the system. It allows enforcement of “need-to-know”
restrictions.

The combination of the two introduces a partial order on security classes,
called dominates��� * ��� * � 	 ���
 ���
 � �

�
� * � �

 � * � �

44 c
�

Pierangela Samarati

Classification Lattice

Security classes together with
	

introduce a lattice
� � � � 	 �

Reflexivity of
	 � � � � � � � 	 �

Transitivity of
	 � � ��� ��� � � � � � 	 � ��� 	 � � �

� 	 �

Antisymmetry of
	 � � ��� � � � � � 	 � ��� 	 �

� �
�

� �

Least upper bound
� � ��� � � � ��� 	
� � � �

� � 	 �
and � 	 �

�
��� � � � � � 	 �

and
� 	 � � �

� 	 � .

Greatest lower bound
� � �
� � � � ��� 	
� � � �

�
� 	 � and � 	 �

�
��� � � � � � 	 �

and � 	 �
� � � 	 �

.

45 c
�

Pierangela Samarati

Classification Lattice – example

Levels: Top Secret (TS), Secret (S)

Categories: Army, Nuclear
TS, � Army,Nuclear �

TS, � Army � TS, � Nuclear �

TS, � �

������
� � � � � �

� � � � � �
������

S, � Army,Nuclear �

S, � Army � S, � Nuclear �

S, ���

������
� � � � � �

� � � � � �
������

� ���	� (
 TS, � Nuclear ��
 ,
 S, � Army,Nuclear ��
) =
 TS, � Army,Nuclear ��

� ����� (
 TS, � Nuclear ��
 ,
 S, � Army,Nuclear ��
) =
 S, � Nuclear ��

46 c
�

Pierangela Samarati

Semantics of security classifications

Each user is assigned a security class (clearance).

A user can connect to the system at any class dominated by his
clearance.

Subjects activated in a session take on the security class with which the
user has connected.

Secrecy classes

� assigned to users reflect user’s trustworthiness not to disclose
sensitive information to individuals who do not hold appropriate
clearance.

� assigned to objects reflect the sensitivity of information contained in
the objects and the potential damage that could result from its
improper leakage

Categories define the area of competence of users and data.

47 c
�

Pierangela Samarati

Bell La Padula

Defines mandatory policy for secrecy

Different versions of the model have been proposed (with small

differences or related to specific application environments); but basic

principles remain the same.

Goal: prevent information to flow to lower or uncomparable security

classes

*-property A subject � can write object 	 only if �
� 	 � 	

�
� � �

simple property A subject � can read object 	 only if �
� � � 	

�
� 	 �

� � NO WRITE DOWN

NO READ UP

Easy to see that Trojan Horses leaking information through legitimate

channels are blocked

48 c
�

Pierangela Samarati

Information flow for secrecy
.

.

.

.

.

SUBJECTS OBJECTS

w
ri

te
s

reads

reads

reads

reads

w
ri

te
s

w
ri

te
s

w
ri

te
s

TS

S

C

U

In
fo

rm
at

io
n

Fl
ow

TS

S

C

U

49 c
�

Pierangela Samarati

Bell LaPadula security properties

System is modeled as state and transitions of states

State � � � ordered triple
��� � � �

�
�
� � � � � � � � � �

: set of accesses (current) in state �
� : Access matrix with � rows, � columns, � entries

� � � � � � � �
: returns the classification of subjects and objects

simple security State
��� � � �

�
is secure iff� � ���
	 �

�
� � � �

� � �	��

� � �
� � � 	

�
� 	 �

*-security State
��� � � �

�
is secure iff� � ���
	 �

�
� � � �

� � ��������� � �
� 	 � 	

�
� � �

A state is secure iff it satisfies the simple security property and *-property.

State transition function
� � � � � � � transforms the state into

another that satisfies the two properties.

50 c
�

Pierangela Samarati

BLP — Secure system

A system (� � � � � �) is secure iff � � is secure and every state reachable
from � � by executing a finite sequence of requests from � is secure.

Theo A system (�
 � � � �) is secure iff

� � � is a secure state
�

�
is such that

� � reachable from � � by executing one or more
requests from � , if

� � � � � � � � � , where � �
��� � � �

�
, and

� � �
��� � � � � � � � � then

� � � � �
	 � � :

–
� ���
	 � � �
 � � � � �
 � ���
	 � � ��

� � �� �

� � � � � � 	
� � � 	 �

–
� ���
	 � � �
 � � � �

� � � � � �	
� � � 	 � �

� ���
	 � � �
 � � �� � �
–
� ���
	 � � � � � � � � � �
 � ���
	 � � � � � � � �� �

� � � � 	 � 	
� � � � �

–
� ���
	 � � � � � � � � �

� � � 	 � �	
� � � � � �

� ��� 	 � ����� � � � �� � �

Problem: no restriction is place on
�

, which can be exploited to leak
information

51 c
�

Pierangela Samarati

BLP +tranquility

Security restrictions not enough. Need to control
�

.

Assume
�

as follows:
� when a subject requests any access on an object, the security level of

all subjects and all objects is downgraded to the lowest level and the
access is granted

Secure by BLP but not secure in a meaningful sense

BLP is made secure by addition of

Tranquility property The security level of subjects and objects cannot
change

Loosening up tranquility restriction:
� Not all changes of levels leak information (e.g., upgrading can be ok)
� Trusted subjects can be allowed for downgrading (e.g., sanitization)

52 c
�

Pierangela Samarati

Lattice models of information flow control

Extends Bell La Padula to include notion of information flow

Assume lattice
�

�
� � � � 	 �

of security classes and classification of
objects, both logical (files) and physical (memory segments)

Information state of a system described by value and security class of
objects

Access classes assigned to objects can be
� fixed – static binding
� variable – dynamic binding

A flow from object
�

to object � (
� � �) is authorized iff �

	 �
, where �

and
�

are the classes of � and
�

after the flow

Definition of flow based on analysis of programs. E.g.,
� � �

�
(explicit flow) � � �

� � � � � � (indirect flow)
if
�

� � then � � � (implicit flow)

53 c
�

Pierangela Samarati

Exceptions to axioms

Real-word requirements may need mandatory restrictions to be bypassed

Data association: A set of values seen together is to be classified higher

than the value singularly taken (e.g., name and salary)

Aggregation: An aggregate may have higher classification than its

individual items. (e.g., the location of a single military ship is

unclassified but the location of all the ships of a fleet is secret)

Sanitization and Downgrading: Data may need to be downgraded after

some time (embargo). A process may produce data less sensitive

than those it has read

� � Trusted process

A trusted subject is allowed to bypass (in a controlled way) some

restrictions imposed by the mandatory policy.

54 c
�

Pierangela Samarati

Coexistence of DAC and MAC

DAC and MAC not mutually exclusive

� E.g., BLP enforces DAC as well

DAC property
� � � � ��� 	 � �

�
s.t. �

� �����
	�� �

If both DAC and MAC are applied only accesses which satisfy both are

permitted

DAC provides discretionality within the boundaries of MAC

55 c
�

Pierangela Samarati

Limitation of mandatory policies

Secrecy mandatory policy (even with tranquility) controls only overt

channels of information (flow through legitimate channels).

Remain vulnerable to covert channels.

Covert channels are channels not intended for communicating information

but that can, however, be exploited to leak information.

Every resourse or observable of the system shared by processes of

different levels can be exploited to create a covert channel.

56 c
�

Pierangela Samarati

Covert and timing channels – examples
� Low level subject asks to write a high level file. The system returns

that the file does not exist (if the system creates the file the user may

not be aware when necessary).

� Low level subject requires a resource (e.g., CPU or lock) that is busy

by a high level subject. Can be exploited by high level subjects to leak

down information.

� A high level process can lock shared resourses and modify the

response times of process at lower levels (timing channel). With

timing channel the response returned to a low level process is the

same, its the time to return it that changes.

Locking and concurrency mechanisms must be redefined for multilevel

systems.

(Careful to not introduce denial-of-service.)

57 c
�

Pierangela Samarati

Covert channel analysis

Covert channel analysis usually done in the implementation phase (to

assure that a system’s implementation of the model primitive is not too

weak).

Interface models attempt to rule out such channels in the modeling phase.

� Non interference: the activity of high level process must not have any

effect on processes at lower or incomparable levels.

58 c
�

Pierangela Samarati

Multilevel databases

The Bell-La Padula model was proposed for the protection at the OS level.

Subsequent approaches have investigated the application of multilevel

policies to data models (DBMS, object-oriented systems, ...)

While in the OS context the security level is assigned to a file, DBMS can

afford a finer grained classification:

� relation

� attribute

� tuple

� element

59 c
�

Pierangela Samarati

Relational data model

Each relation is characterized by

� Scheme of the relation � � � * �-,-,-, � � � � . Indipendent from the state.

� Istance of the relation, dipendent on the state, composed of tuples�
��* �1,-,-, � � � �

Name Dept Salary

Bob Dept1 100K

Ann Dept2 200K

Sam Dept1 150K

Key attributes uniquely identify tuples

– No two tuples can have a same key

– Key attributes cannot have null values

60 c
�

Pierangela Samarati

Multilivel DBMSs

In DBMSs that support element level classification, each relation is

characterized by

� Scheme of the relation � � � * ��� * �-,-,1, �
� � ��� � � , indipendent from

the state

– � � ��� � � �-,-,1, ��� range of security classifications

� Set of istances of the relation � � dependent on the state; one istance

for each security class � . Each instance is composed of tuples�
��* � ��* ,-,-, �

� � � � � � .
Instance at level � contains only elements whose classification is

dominated by � .

61 c
�

Pierangela Samarati

Multilivel relational data model

Access control obeys the BLP principles

� no read up (the view of a subject at a given access class � contains

only the elements whose classification is dominated by �)
� no write down further restricted

� � Every subject writes at only its level

With classification at fine granularity write up is not needed

62 c
�

Pierangela Samarati

Multilivel relation – example

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Instance U

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Sam U Dept1 U - U

S-instance is the whole relation

63 c
�

Pierangela Samarati

Multilevel relational model

For each tuple in a multilevel relation

� key attributes uniformly classified
� � � � � � � � � � � � � � � �

� � � � � � � � �
� � � � � � �

� the classifications of nonkey attributes must dominate that of key

attributes
� � � � � � � � � � � � � � �� � � � �

� � � � � � � � �
� � � � � � �

64 c
�

Pierangela Samarati

Polyinstantiation

Fine grained classification must take into consideration data semantics

and possible information leakage

� � Complications:

� Polyinstantiation: presence of multiple object with the same name but

different classification

� � different tuples with same key but
� different classification for the key (polyinstantiated tuples)
� different values and classifications for one or more attributes

(polyinstantiated elements)

65 c
�

Pierangela Samarati

Polyinstantiation

Polyinstantiated tuples

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Ann U Dept1 U 100K U

Polyinstantiated elements

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Sam U Dept1 U 100K U

66 c
�

Pierangela Samarati

Polyinstantiation
� Invisible A low level subject inserts data in a field that already

contains data at higher or incomparable level

� Visible A high level subject inserts data in a field that contains data at

a lower level

67 c
�

Pierangela Samarati

Invisible polyinstantiation

A low level subject requests insertion of a tuple

The relation already contains a tuple with the same primary key but with

higher classification

� Tell the subject � � information leakage

� Replace the old tuple with the new one � � loss of integrity

� Insert a new tuple � � polyinstantiated tuple

68 c
�

Pierangela Samarati

Polyinstantiated tuples – example

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Request by U-subject

INSERT INTO Employee VALUES Ann,Dept1,100K

Name � � Dept � � Salary � �
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Ann U Dept1 U 100K U

69 c
�

Pierangela Samarati

Polyinstantiated elements – example

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Request by U-subject

UPDATE Employee SET Salary=“100K” WHERE Name=“Sam”

Name � � Dept � � Salary � �
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 150K S

Sam U Dept1 U 100K U

70 c
�

Pierangela Samarati

Visible polyinstantiation

A high level subject requests insertion of a new tuple.

The relation already contains a tuple with the same primary key but with a

lower classification

� Tell the subject � � denial of service

� Replace the old tuple with the new one � � information leakage

� Insert a new tuple � � polyinstantiated tuple

71 c
�

Pierangela Samarati

Polyinstantiated tuples – example

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann U Dept1 U 100K U

Sam U Dept1 U 150K S

Request by S-subject

INSERT INTO Employee VALUES Ann,Dept2,200K

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann U Dept1 U 100K U

Sam U Dept1 U 150K S

Ann S Dept2 S 200K S

72 c
�

Pierangela Samarati

Polyinstantiated elements – example

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 100K U

Request by S-subject

UPDATE Employee SET Salary=“150K” WHERE Name=“Sam”

Name ��� Dept ��� Salary ���
Bob U Dept1 U 100K U

Ann S Dept2 S 200K S

Sam U Dept1 U 100K U

Sam U Dept1 U 150K S

73 c
�

Pierangela Samarati

Polyinstantiation

Possible semantics for polyinstantiated tuples and elements

� polyinstantiated tuples � � different entities of the real world

� polyinstantiated elements � � same entity of the real world

Polyinstantiation must be controlled (not all instances of the database

may make sense)

� At most one tuple per entity should exist at each level

.... polyinstantiation quickly goes out of hand.....

Alternative: use of “restricted” values (instead of “null”)

The community has longly debated wrt

� what is the correct classification granule

� polyinstantiation vs use of restricted values

74 c
�

Pierangela Samarati

Cover story

Commercial M-DBMSs (es., Trusted Oracle) support classification at the

level of tuples.

Polyinstantiation is blaimed to be one of the main reasons why multilevel

DBMSs have not succeeded.

Polyinstantiation is not always bad. It can be useful to support cover

stories.

� cover story: incorrect values returned to low level subject to protect

the real value (useful when returning restricted/null would leak

information)

Support of fine-grained classification has also other problems

� support of integrity constraints becomes complex

� need to control inference channels

75 c
�

Pierangela Samarati

MDBMS – Architectures
� Trusted subject: data at different levels are stored in a single

database.

The DBMS must be trusted to ensure obedience of the mandatory

policy.

� Trusted computing base: data are partitioned in different databases,

one for each level.

Only the operating system needs to be trusted.

Each DBMS is confined to access data that can be read at its level

(no-read-up).

(Decomposition and recovery algorithms must be carefully

constructed to be correct and efficient.)

76 c
�

Pierangela Samarati

MDBMS – Architectures

TRUSTED OS

Low subject High subject

.......

TRUSTED OS

Low DBMS High DBMS

Database
Multilevel

Low
Database

High
Database

TRUSTED DBMS

(a) Trusted subject (b) Trusted computing base

Low subject High subject

.......

...

77 c
�

Pierangela Samarati

Integrity mandatory policy

Secrecy mandatory policies control only improper leakage of information.

Do not safeguard integrity � information can be tampered

Dual policy can be applied for integrity, based on assignment of (integrity)

classifications.

Integrity classes

� assigned to users reflect users’ trustworthiness not to improperly

modify information.

� assigned to objects reflect the degree of trust in information contained

in the objects and the potential damage that could result from its

improper modification/deletion

Categories define the area of competence of users and data.

78 c
�

Pierangela Samarati

Biba model for integrity

Defines mandatory policy for integrity

Goal: prevent information to flow to higher or uncomparable security

classes

Strict integrity policy Based on principles dual to those of BLP

*-property A subject � can write object 	 only if �
� � � 	

�
� 	 �

simple property A subject � can read object 	 only if �
� 	 � 	

�
� � �

� � NO WRITE UP

NO READ DOWN

Secrecy and integrity policies can coexist but
..... need “independent” labels

79 c
�

Pierangela Samarati

Information flow for integrity

. .

.

.

.

SUBJECTS OBJECTS

C

I

U

Inform
ation Flow

re
ad

s

re
ad

s

re
ad

s

w
rites

w
rites

w
rites

C

I

U

80 c
�

Pierangela Samarati

Biba model for integrity – Alternative policies

Low-water mark for subjects
� A subject � can write object 	 only if �

� � � 	
�
� 	 �

� A subject � can read any object 	 .

After the access �
� � � � � � ��� � �

��� � � �
��� � �

.

Drawback: order of operations affects subject’s privileges

Low-water mark for objects
� A subject � can read object 	 only if �

� 	 � 	
�
� � �

� A subject � can write any object 	 .

After the access �
� 	 � � � ����� � �

��� � � �
��� � �

.

Drawback: it does not safeguard integrity but simply signals its

compromise

81 c
�

Pierangela Samarati

Limitation of Biba policies

Biba principles control only compromises due to improper flows.

Integrity is a more complex concept.

A proposal by Clark e Wilson defines four basic criteris to safeguard
integrity:

1. Authentication.

2. Audit.

3. Well-formed transactions Users cannot manipulate data arbitrarily but
only through procedures preserve integrity (e.g., double entry
bookeeping in accounting). Well-formed transation must provide
serializability, recovery, and concurrency control.

4. Separation of duty When assigning users the programs he can
execute, the system must enforce separation of duty.

Weakness of CW: not formalized � � Difficult to reason about properties.

82 c
�

Pierangela Samarati

Chinese wall

Special type of mandatory-style dynamic separation of duty for protecting

secrecy

Goal prevent information flows which cause conflict of interest for

individual consultants (e.g., an individual consultant should not have

information about two banks or two oil companies)

Objects organized hierarchically. Three levels

� basic objects (e.g., files)

� company datasets group objects referring to a same corporation

� conflict of interest classes groups all company datasets whose

corporation are in competition

83 c
�

Pierangela Samarati

Chinese wall

Restrict access with mandatory constraints
� If a user accesses an object 	 in a dataset

�
he will not be allowed

access to objects belonging to datasets in the same conflict of
interest class as

�

ObjB-1

ObjB-2

Company B

ObjA-1 ObjA-2

ObjA-3

Company A

ObjD-1

ObjD-2

Company D

ObjC-1

ObjC-2

Company C

Conflict of interest classConflict of interest class

84 c
�

Pierangela Samarati

Chinese wall

Other aspects:

� users vs subjects

� history keeping

� accessibility problems (e.g., all users read same dataset)

� sanitization

Chinese wall useful but model not well formalized

85 c
�

Pierangela Samarati

Administrative policies

Define who can grant and revoke access authorizations.
� Centralized: a privileges authority (system security officer) is in

charge of authorization specification.
� Ownership The creator of an object is its owner and as such can

administer access authorization on the object.

Ownership not always clear in:

– hierarchical data models (e.g., object-oriented)

– RBAC framework

Authority to specify authorizations can be delegated.

Delegation often associated with ownership: the owner of an object
delegates administrative privileges to others.

Decentralized administration introduces flexibility, but complicates the
scenario.

86 c
�

Pierangela Samarati

Decentralized administration

Different administrative policies can differ for how they respond to the

following questions.

� At which granularity should administrative authorizations be

supported?

can go at the fine graine of each single access (action, object)

� can further delegation be restricted?

usually not; but may be useful

� who can revoke authorizations?

who granted them; the owner; every administrator

� what happens to the authorizations granted by somebody whose

administrative privileges are being revoked?

should we delete them? should we keep them?

87 c
�

Pierangela Samarati

Decentralized administration

Different administrative policies can differ for how they respond to the

following questions.

� At which granularity should administrative authorizations be

supported?

can go at the fine grain of each single access (action, object)

� can further delegation be restricted?

usually not; but may be useful

� who can revoke authorizations?

who granted them; the owner; every administrator

� what happens to the authorizations granted by somebody whose

administrative privileges are being revoked?

should we delete them? should we keep them?

88 c
�

Pierangela Samarati

Authorization administration in SQL

The user who creates a table is its owner and can grant authorizations on

the table to others.

� authorization can be granted with grant-option

� grant option on an access allows a user to further grant that access

(and grant option) to others � � chain of authorizations.

� users can revoke only authorizations they have granted

89 c
�

Pierangela Samarati

Revocation in administration in SQL

When a user is revoked the grant option for a privilege what should

happen to the authorizations for the privilege she granted?

Revocation can be requested:

with cascade (recursive) If the revoker would not hold anymore the

privilege with the grant option, the authorizations she granted are

recursively deleted. Need to pay attention to cycles.

without cascade If the revocation of an authorization would imply

recursive deletion, the revoke operation is not executed.

The original (cascade) revocation policy was based on time: all

authorizations granted in virtue of an authorization that was being revoked

were deleted, regardless of other later authorizations that the user had

received.

90 c
�

Pierangela Samarati

Recursive revocation in SQL – example

�� ��
Ann

�� ��
Bob

�� ��
Chris

�� ��
David

�� � �
Ellen

�� � �
Frank

�� � �
Gary

�� � �
Homer

80 g �

�
20 g

�30 g

�40 g
�

60 g

�
50 g

�70 g

�55 g

Bob revokes the autorization from David

91 c
�

Pierangela Samarati

Recursive revocation in SQL – example

�� ��
Ann

�� ��
Bob

�� ��
Chris

�� ��
David

�� � �
Ellen

�� � �
Frank

�� � �
Gary

�� � �
Homer

80 g �

�
20 g

�30 g

�40 g
�

60 g

�
50 g

�70 g

�55 g

Bob revokes the authorization from David

�� ��
Ann

�� ��
Bob

�� ��
Chris

�� ��
David

�� � �
Ellen

�� � �
Frank

�� � �
Gary

�� � �
Homer

80 g �

�
20 g

�30 g

�
60 g

�
50 g

�70 g

�55 g

91 c
�

Pierangela Samarati

DAC – Expanding authorizations

Traditionally supported:

user groups Users collected in groups and authorizations specified for

groups

conditional Validity of authorizations dependent on satisfaction of some

conditions
� system-dependent evaluate satisfaction of system predicates

– location

– time
� content-dependent dependent on value of data (DBMS)
� history dependent dependent on history of requests

Relatively easy to implement in simple systems

Introduce complications in richer models

92 c
�

Pierangela Samarati

Expanding authorizations – 1

Specifications for single entities (users, files, ...) too heavy

� support abstractions (grouping of them). Usually hierarchical

relationships: users/groups; objects/classes; files/directories;

Authorizations may propagate along the hierarchies

93 c
�

Pierangela Samarati

Hierarchical data systems – 2

Support of hierarchies can be applied to all dimensions of authorizations.

Subjects (e.g., users vs groups)
Public

Citizens Eng-Dept Non-citizens

Jim Mary Jeremy

CS-Faculty

CS-Dept

SamGeorge Lucy Mike

Objects (e.g., files vs directories, objects vs classes)
mail accts

univ personal staff faculty gif

jim ed val mom dad sis jim ed val a.gif b.gif c.jpg d.jpg

jpg

images

Actions action grouping (e.g., write modes)

subsumption (e.g., write
	

read)

94 c
�

Pierangela Samarati

Expanding authorizations – 2

Usefulness of abstractions limited if exceptions are not possible. E.g., all

Employees but Sam can read a file

� support negative authorizations

(Employees, read, file, +) (Sam, read, file, -)

Presence of permissions and denials can bring inconsistencies

� how should the system deal with them?

95 c
�

Pierangela Samarati

Permissions and denials

Easy way to support exceptions via negative authorizations.

Negative authorizations first introduced by themselves as:

open policy: whatever is not explicitely denied can be executed; as
opposed to

closed policy: only accesses explicitely authorized can be executed

Recent hybrid policies support both, but
� what if for an access we have both + and -? (inconsistency)
� what if for an access we have neither + nor -? (incompleteness)

Incompleteness may be solved by either
� assuming completeness: for every access either a negation or a

permission must exist � � too heavy
� assuming either closed or open as a basis default decision

96 c
�

Pierangela Samarati

Permissions and denials – 2

Possible conflict resolution policies

� denials-take-precedence negative authorization wins (fail safe

principle)

� most-specific-takes-precedence the authorization that is “more

specific” wins

� most-specific-along-a-path-takes-precedence the authorization that is

“more specific” wins only on the paths passing through it

� authorizations propagate until overridden by more specific

authorizations

� Other.....

97 c
�

Pierangela Samarati

Example of conflict resolution

� *

�
 � � � �

� �

� *

� �

�

�

� �

�

� � 	

� �

�

�

	

explicit authorizations

98 c
�

Pierangela Samarati

Examples of conflict resolution

� *

�
 � � � �

� �

� *

� �

�

�

� �

�

�

� �

�

� � 	

� �

�

�

	

most specific

� *

�
 � � � �

� �

� *

� �

�

�

� �

�

�

�
�

�

�

� � 	

� �

�

�

	

most specific along a path

99 c
�

Pierangela Samarati

Most specific take precedence

Most specific intuitive and natural but

� what is more specific if multiple hierarchies?

(Employees, read, file1, +)

(Sam, read, directory1, -)

� in some cases not wanted.

E.g., authorizations that do not allow exceptions

– (Employees, read, bulletin-board, +)

I do not want anybody to be able to forbid

– (Employees, read, budget, +)

(Temporary employees, read, budget, -)

I do not want my restriction on temporary employees to be

bypassed

100 c
�

Pierangela Samarati

Other conflict resolution policies

Strong vs weak (e.g., Orion) authorizations

Strong authorizations cannot be overridden

Weak authorizations can be overridden. Usually,
� Strong authorizations always override weak authorizations
� Weak authorizations override each other according to overriding

(most specific) policy

Some limitations/complications:

� Supports only two levels. May not be enough

� Strong authorizations must be consistent

Not easy when groupings are dynamic

(e.g., content-based conditions)

101 c
�

Pierangela Samarati

Other conflict resolution policies – 3

Explicit priority authorizations have associated explicit priorities
� difficult to manage

Positional strength of authorizations depend on order in authorization list
� gives responsibility of explicitely resolving conflicts to security
administrator

� controlled administration difficult to enforce

Grantor-dependent strength of authorizations depend on who granted

them
� need to be coupled with others to support exceptions among
authorizations stated by a single administrator

Time-dependent strength of authorizations depend on time they have

been granted (e.g., more recent wins)
� limited applicability

102 c
�

Pierangela Samarati

Conflict resolution policies

Different conflict resolution policies are not in mutual exclusion. E.g., I can

first apply “most specific” and then “denials-take-precedence” on the

remaining conflicts

There is no policy better than the others:

Different policies correspond to different choices that we can apply for

solving conflicts.

Trying to support all the different semantics that negation can have

(strong negation, exception,....) can lead to models not manageable.

� � Often negative authorizations are not used.

However, they can be useful.

� � Systems that support negative authorizations usually adopt one

specific conflict resolution policy.

103 c
�

Pierangela Samarati

Positive and negative autorizations in Apache

Authorizations can be positive or negative.

Users can specify an order that defines how to interpret positive/negative

authorizations. Two choices:

deny,allow negative authorizations are evaluated first and access is

allowed by default. A requestor is granted access if it does not have

any negative authorizations or it has a positive autorization.

allow,deny positive authorizations are evaluated first and access is

denied by default. A requestor is denied access if it does not have

any positive authorization or it has a negative authorization.

Example

Order Deny,Allow

Deny from all

Allow from .crema.unimi.it

104 c
�

Pierangela Samarati

Expanding DAC authorizations

Recent DAC models try to include at least

� positive as well as negative authorizations

� authorization propagation based on hierarchies

� conflict resolution and decision strategies

� additional implication relationships

Goal Be flexible and go towards support of multiple policies

� Different administrators may have different protection requirements

� Same administrator but objects to be protected differently

� Protection requirements may change over time

105 c
�

Pierangela Samarati

Logic-based authorization languages

Recent approaches based on use of some logic.

Good: increased expressiveness and flexibility

.... but we must be careful to

� balance flexibility/expressiveness vs performance

� not loose control over specifications

� guarantee behavior of the specifications (do not forget we are talking

of security)

Some proposals allow multiple interpretations

� � ambiguous semantics of security specifications

106 c
�

Pierangela Samarati

Example of a logic based authorization specification
language

cando(o,s,
 sign
 a) : explicit authorizations.

dercando(o,s,
 sign
 a) : defines implied authorizations

do(o,s,
 sign
 a) states the accesses that must be allowed or denied.

done(o,s,r,a,t) access history.

error integrity constraints.

hie-predicates: hierarchical predicate

rel-predicates: application specific predicates (es.,� ��� � � ����� �
� � ���
	 ��� � � � �
��� � ��� � � � � ����� �
��� � ��� �
��� �).

107 c
�

Pierangela Samarati

FAF rule stratification

Format of rule is restricted to ensure stratification of rules

Level Predicate Rules defining predicate

0 hie-predicates base relations.

rel-predicates base relations.�������
base relation.

1 �	� �
��� body may contain
�������

, hie-

and rel-literals.

2
����� �	� �
��� body may contain �	� �
����
������ �	� �
����
�������� ,

hie-, and rel- literals. Occurrences of����� �	� �
��� literals must be positive.

3
���

in the case when head is of the form�����

������
body may contain �	� �
����
����� �	� �
����
�������� , hie- and rel- literals.

4
���

in the case when head is of the form��������
���
������
body contains just one literal

 �������!
"��
#�����
.

5
���$�����

body may contain
���#
 �	� �
����
������ �	� �
����
�������� ,

hie-, and rel- literals.

Default rule: � � � 	 � ��� � �
� % & � � � 	 � ��� � �

�

108 c
�

Pierangela Samarati

Examples of FAF rules

��������� �
	���
�������� � + � � ��� � � � � ��� ��������
 ��� ���� 1� !
" � � �#� �%$ � 	'& - (�*)���
 � �+� � -� �

��������� �
	���
���, ��� � + � � ��� � � � � ��� ��������
 ��� ���� 1� !
� � ��� �.- ��� - � �/&+�10�� � 1� �

� � � ��������� �
	���
��+� �2� �43 5 � �/&�� � � � � � ���/����� �6	���
7��, �2� �98 � � ��� � �
� � � ���/����� � & �2� �43 : � ��� � � � ����� � � & ��� � � �;5 � �/&<� ��=���!� � � & �>��? � �@ ���

� � � �����<��� �
	A��
7������� �43 � � ��� � � � � � ���/����� �6	���
7��, �2�CB �98 � � ��� ��!� � �#� ��D ��! � � ��� B ��D ���

109 c
�

Pierangela Samarati

Examples of FAF rules – 2

� � ��� ����� � � ��� � �
� % � �
�
�
 �	� � ��� ����� � � ��� � �

� ,
� � ��� ������� � ��� � �

� % & �	� � �
�� � � ��� ��� � � � ��� � �
� ,

� � � 	 � ��� � �	��

� � % & �	� � �
�� � � � 	 � ��� � �	��

� ���
& �	� � �
�� � � � 	 � ��� � �	��

� ���
� � � 	 ��� � � � - � � � � � ,

�
� � � � % � � � ���
	 � � ��� � � � �
� � � � ����� � � � � � � ���	��� � � ,
�
� � � � % � � � 	 � ��� � ����� � � ��� � � � 	 � ��� � � �
�� �
 � � ���

� � � 	 ��� � ��� � �	� � � � � � � ,

110 c
�

Pierangela Samarati

Expanding authorization form

Observation Ability to execute activities requires several privileges.

Granting and revoking such privileges may become a hassle

� � (user,object) authorizations too complex to maintain by hand in large

databases.

Look at applications and provide support for

� Application/task concepts

� Least privilege

� Separation of duty (static and dynamic)

111 c
�

Pierangela Samarati

Role-based access control model

Role named set of privileges related to execution of a particular activity

Access of users to objects mediated by roles

� Roles are granted authorizations to access objects

� Users granted authorizations to activate roles

� By activating a role
 a user can executed all access granted to

� The privileges associated with a role are not valid when the role is not

active

Note difference between

� group: set of users

� role: set of privileges

112 c
�

Pierangela Samarati

RBAC

USERS OBJECTSROLES

role1

role2

... ...

rolen
...

113 c
�

Pierangela Samarati

Role-based access control model – 2

Role hierarchy defines specialization relationships

Employee

Adm-staff Research-staff

Secretary Dean Chair Faculty Researcher

� � � ���
���� �

� � � ���
���� �� �

� � � ���
���� �

Hierarchical relationship � � authorization propagation

� If a role
 is granted authorization to execute (action, object) � � all

roles generalization of
 can execute (action, object)

� If � is granted authorization to activat role
 � � � can activate all

generalizations of

114 c
�

Pierangela Samarati

RBAC – Advantages

Easy management easy to specify authorizations (e.g., it is sufficient to

assign or remove a role for a user to enable the user to execute a

whole set of tasks)

Role hierarchy can be exploited to support implication. Makes

authorization management easier.

Restrictions Further restrictions can be associated with roles, such as

cardinality or mutual exclusions.

Least privilege It allows to associated with each subject the least set of

privileges the subject needs to execute its work � � Limits abuses

and damages due to violations and errors.

Separation of duty Roles allow to enforce separation of duty (split

privileges among different subjects).

115 c
�

Pierangela Samarati

Role-based models – 4

Role-based models try to look at the real-world applications but there are

still things to do

� hierarchical relationships limiting (e.g., secretary can operate on

behalf of his manager)

� hierarchy-based propagation not always wanted (some privileges may

not propagate to subroles)

� administrative policies need to be enriched (authority confinement)

� lack relationships with user identifiers (needed for individual

relationships – e.g., “my secretary”)

� should be enriched with constraints that well fit the paradigm E.g.,

dynamic separation of duty (e.g., completion of an activity requires

participation of at least � individuals)

116 c
�

Pierangela Samarati

Separation of duty

Separation of duty principle: no user (or restricted set of users) should
have enough privileges to be able to abuse the system.

static who specifies the authorizations must make sure not to give “too
much privileges” to a single user

dinamic the control on limiting privileges is enforced at runtime: a user
cannot use “too many” privileges but he can choose which one to use.
The system will consequently deny other accesses � � more flexible

Example: order-goods, send-order, record-invoice, pay. Four employees.
Protection requirements:
at least two people must be involved in the process

static the administrator assigns tasks to users so that none can execute
all the four operations

dinamic each user can execute any operation, but cannot complete the
process and execute all four.

117 c
�

Pierangela Samarati

Roles in SQL

In SQL privileges can be grouped in roles that can be assigned to users

or to other roles (nested)

Update on
Profit_Center

Select from
invoice

Insert into
Budget

Update on
Cost_Center

Accounts_
Receivable

Accounts_
Supervisor

Account_
Payable

Ann

Tom

Bob

By activating a role a user is enable for all the privileges in a subset

rooted at that role

� At all time, at most one role active per user

� roles can be granted to users with grant option

118 c
�

Pierangela Samarati

Access control in open systems

Assumptions of traditional systems result limiting

� different independent access control policies may need to maintained

and applied in combination

� � Need for policy composition

� authentication may not always be possible or wanted

� � Need for access control based on digital credentials

� need to augment expressiveness of access control (e.g.,

purpose-based restrictions) and support of dynamic conditions (e.g.,

payment)

� � Need for interactive access control systems

119 c
�

Pierangela Samarati

Policy composition

Security policies result from multiple input requirements
� Federated/Legacy Databases, Datawarehouses. The security policies

of all individual data sources must be harmonized
� Statistical Repositories. Data owners’ requirements must be

combined with the repository’s policy
� Large organizations. Each department may decide its own policy, to

some extent
� Laws on Privacy Protection. Must be reconciled with the

organization’s policy
� Dynamic coalitions. Organizations come together for a limited time

framework and need to establish coordinated policies.

Need to combine policies and maintain independence and control on the
single components

120 c
�

Pierangela Samarati

Composition framework – desiderata (1)

Heterogeneous policy support
� Component policies may be of different kinds (e.g., open, closed)
� They may be specified in arbitrary languages and enforced by

different mechanisms
� Possible scenarios: Federated databases, Legacy databases,

Datawarehouses

Support of unknown policies
� Some policies may be partially/totally unknown at composition

time (black boxes)
� Some are never available “as a whole”, and can only be queried at

run-time
� Possible scenario: incorporating central administration approval —

possibly implemented as an external module

121 c
�

Pierangela Samarati

Composition framework – desiderata (2)

Controlled interference
� Possible problem: merging rules for open and closed policies

– (Closed) grant access if
� ���
	 � � �

�
exists

– (Open) grant access if
� ��� 	 � � �

�
does not exist

The first rule has no effect in the combination – positive
authorizations are ignored !

� The internal behavior of component policies should not be affected

Expressiveness
� A wide range of combinations should be covered

Maximum/minimum privilege, priority levels, overriding,
confinement, refinement, . . .

� With no changes to input specifications
� With no ad-hoc extensions to the structure of authorizations (such

as labels for modeling priorities)

122 c
�

Pierangela Samarati

Composition framework – desiderata (3)

Support of different abstraction levels
� E.g., inter-department combination, single department policies,

etc. (zooming in/out)
� Facilitates specification analysis and design
� Facilitates cooperative administration, and agreement on global

policies
� Facilitates reasoning on specifications (e.g., correctness proofs)

Formal semantics
� The composition language should be

– declarative
– implementation independent
– based on a solid formal framework to guarantee

� non-ambiguous behavior
� sound reasoning about specifications

123 c
�

Pierangela Samarati

Preliminary Concepts for the Algebra (1)

Basic domains

� � , set of subjects (e.g., users, groups, roles, applications)

� � , set of objects (e.g., files, relations, classes)

� � , set of actions (e.g., operations, methods)

Authorization term

� Triple of the form (s,o,a), where s is a constant in � or a variable over
� , o is a constant in � or a variable over � , and a is a constant in �

or a variable over �

124 c
�

Pierangela Samarati

Preliminary Concepts for the Algebra (2)

Policy

� A set of ground authorization terms

�
� � � s,o,a

� �
s
� � � o � � � a � � �

�
�
s,o,a

� �
P � P permits this access

� P represents the outcome or semantics of an authorization

specification, where, for composition purposes, it is irrelevant how

specifications have been stated and their outcome computed.

125 c
�

Pierangela Samarati

Parameters of the Algebra

Our algebra is parametric with respect to the following two languages.

1. An authorization constraint language � ������� and a semantic relation
���
	�� ��
�� � � � � � � � � � � �������
(e.g.,

�
s op s � � , � o op o � � , � a op a � � , p(s), p(o), or p(a))

2. A rule language � ������� and a semantic function� � � � ����� � � � � ������� � � � � � � � � � � � � � � � � � � �
(e.g., simple Horn clauses, built from authorization terms and base

predicates, of the form
� ���
	 �

�
� % � *
 ,-,-,
 � � , where L � � (x

op y), p(x), or auth. term)

126 c
�

Pierangela Samarati

Policy Expressions - Syntax

� ����� ��� � � � � � � � � � � � � � �
ˆ 	 ��

� � ��� ��� � �

� � � ��� � � � � � � �
� ����� � ��� ��� ��� ��� ���
	 ����� �! !" #%$ �& (' ��$ "*)+� �!,.-�/ 0214365 �
� ����� 7 8 7 0214365
7 ����� �93 �
 � , �
�6�6�

NB: 	 and
�

can be replaced by arbitrary languages

127 c
:

Pierangela Samarati

Policy Expressions - Semantics (1)
� ����� � � ���
	�	
� ������ ����� ��	�	
� � �������
	�	�� e.g., maximum privilege

� ����� ��� � � 	�	 � ������ ����� � 	�	 � � ����� � 	�	 � e.g., minimum privilege

� ����� � � � � 	�	 � ������ ����� � 	�	 � ���!� � 	�	 � e.g., exceptions, explicit prohibitions

� ����� " # 	�	 � ������ $&%('*)�+-,/.10 # 23����� 	�	 ��4 e.g., for inheritance

� ����� ˆ 5 	�	6� ������ 780:9 2<;82>= 4 ? ����� 	�	
� @ 0:9 2<;82>= 4)<ACBEDF)HG/I 5 J authority conf.

� ����; 0 � �K2L���&2L��M 4 	�	 � ������ ��� 0 � � � �NM 4 � 0 ��� � �NM 4 	�	 � partial overriding; 0 � � 2L� � 2 ˆ 5 4 � ; 0 � � 2L� � 2L� � ˆ 5 4
� ���PORQ ST� 	�	 � 0VU 4 ������ ����� 	�	 �XWZY [E\^] U _ ` a b a c a function over policies

��� 0 ORQ ST� 4 0 � � 4 	�	
� ������ ���FORQ Sd� 	�	
� 0 ���e� ��	�	
� 4 � ����� 	�	
�
WfY [gWhWjilkm]h]onp]

128 c
:

Pierangela Samarati

Policy Expressions - Semantics (2)

Environment

� Partial mapping from policy identifiers to sets of ground authorizations

����� ��� 	 ��
 � � � if

 � �

� ��
 �
otherwise

� �
��� 	�	�� ������ � � � �

129 c
:

Pierangela Samarati

Graphical Representation

� k�� ��� P2

+

P1

P1

P2

+

� k�� ��� P2P1

&

P1

P2

&

� k�� � � P2P1

-

P1

P2

-

� 	�

R

P P
R

�
ˆ � P

c

P c

o
 P k ,P
�

,P ��� P1 P2 P3

o P2

P1
P3

130 c
:

Pierangela Samarati

An Example (1)

Hospital Domain
�

H is composed of three depts: Radiology, Surgery, Medicine
� Each department can grant access to data under their domain

�
H does not allow any access to lab tests unless there is patient consent

+

<=

Prad Psurg Pmed Pconsents. (o(Prad^[o<=rad]+Psurg^[o<=surg]+ Pmed^[o<=med],Pconsents,^[o<=lab_test]))

Pconsents

τ

Prad

<=[o lab_tests]

<=o rad Psurg <=o surg Pmed o med

131 c
:

Pierangela Samarati

An Example (1)

Hospital Domain
�

H is composed of three depts: Radiology, Surgery, Medicine
� Each department can grant access to data under their domain

�
H does not allow any access to lab tests unless there is patient consent

+

Prad <=o rad Psurg Pmed

Pconsents

<=[o lab_tests]

<=o med<=o surg

Prad Psurg Pmed Pconsents. (o(Prad^[o<=rad]+Psurg^[o<=surg]+ Pmed^[o<=med],Pconsents,^[o<=lab_test]))τ

132 c
:

Pierangela Samarati

An Example (2)

Patient consent
� Patient consent is collected by means of forms and propagated by # � rules

+

Prad <=o rad Psurg <=o surg Pmed <=o med

<=[o lab_tests]

Pconsents

HRPforms Hτ Pforms.Pconsent = (Pforms * R)

133 c
:

Pierangela Samarati

An Example (2)

Patient consent
� Patient consent is collected by means of forms and propagated by # � rules

+

Prad <=o rad Psurg <=o surg Pmed <=o med

<=[o lab_tests]

Pconsents

Pforms HR τ Pforms. HPconsent = (Pforms * R)

134 c
:

Pierangela Samarati

Properties

The formal semantics on which the algebra is based allows us to reason

about policy specifications and their properties.

Example

� patient awareness and hospital authorization: nobody can access

lab tests data if there are not both the patient consent and the

hospital authorization for it.

135 c
:

Pierangela Samarati

Proof of the Property

Statement
Let

� � � � �
 � �

� � �
 �
ˆ � � . ��� � � � � � � � and

�93 �
 � , �
satisfying � ,�93 �
 � , � � ��� � � � � � � � � 	
	 � � �93 �
 � , � � ��� � � 	
	 � and

�93 �
 � , � � �
� � � 	�	 �

Proof

1. �
� � � � � � � � � 	�	 � � � �
� � � 	
	 � � �
� � � ˆ � 	
	 � � 	 � �
� � � 	�	 �
 � � � � ˆ � 	
	 � �
2.

�93 �
 � , �
satisfies � � �93 �
 � , � �� �
� � � 	�	 � � �
� � � ˆ � 	�	 �

3.
�93 �
 � , � � ��� � � � � � � � � 	
	 � iff

�93 �
 � , � � � � � � 	
	 �
 �
� � � ˆ � 	�	 �

�93 �
 � , � � � � � � � � � � � � 	
	 � iff
�93 �
 � , � � � � � � 	
	 � and�93 �
 � , � � � � � � 	
	 �

136 c
:

Pierangela Samarati

Translation into Logic Programs (1)

Policy expressions are enforced by translating them into logic programs

� pe2lp creates a distinct predicate symbol for each policy identifier and

for each operator occurrence

� each operator occurrence is labeled with a distinct integer (labeled

policy expression)

� pe2lp takes a labeled expression and an environment as input and

returns a logic program

– for each policy identifier P � auth �
– for each operator op � � auth �

137 c
:

Pierangela Samarati

Translation into Logic Programs (2)

E pe2lp(E,e)� ���������	�
�

������� ���
�
�������� ��� �
 � ��� if
�
 � � is defined, � otherwise� � ��� ��������� �
�� ��!"��# �%$ & ')(+*-,/.
�� ��!"�0# �0� �1�2�3� �
�� ��!"�0# �4$ & '5(6*7,/8
�� ��!"�0# ���9

pe2lp
 � � � � 9 pe2lp
 � � � �� � � � ��������� �
�� ��!"��# �%$ & ')(+*-, .
�� ��!"�0# �/: & ')(+*-, 8
�� ��!"��# ���9
pe2lp
 � � � � 9 pe2lp
 � � � �� � � � ��������� �
�� ��!"��# �%$ & ')(+*-, .
�� ��!"�0# �/: ;<& ')(+*-, 8
��=�>!?��# ���9
pe2lp
 � � � � 9 pe2lp
 � � � ��

ˆ
�A@ ��������� �
�� ��!"��# �%$ & ')(+*-,/.
�� ��!"�0# �/: @ � 9

pe2lp
 � � � �
� �
 � � � �
 � ��������� �
�� ��!"��# �%$ & ')(+*-,/.
�� ��!"�0# �/: ;<& ')(+*-,CB
�� ��!"�0# �0��1�2�3� �
�� �>!"�0# �%$ & '5(6*7, 8
�� �>!"�0# ��: & ')(+*-, B
�� �>!"�0# ���9

pe2lp
 � � � � 9 pe2lp
 � � � � 9 pe2lp

 � � �� 	 �
 ��������� �
�
����-�0� �D$ �1�2�3� �
�
 k ��� k ��� k �/: EFE
: �1�2��� �
�
HGI�1�5GI�1�JG ���

�
��0�-��� �%$
�
 k ��� k ��� k �/: EKEHE
:
�
 G ��� G ��� G � ���
 �9 �����2�3� �
�� �>!"�0# �4$ & ')(+*-, .
��=�0!"�0# ��� 9 pe2lp
 � � � �L �NM E �
 � � ���������PO
�� ��!"�0# �D$ & '5(6*-,C8
�� ��!"��# ���9

pe2lp
 � � � � 9 pe2lp
 � � � �

138 c
:

Pierangela Samarati

An Example of Translation
� Expression: � � � � ��� � � � � �
� Mapping: ��� maps

�
to 	 ��

������������� � ����
�������������������� ���� � � �

are all undefined

Canonical Translation of ����! #" i 0�$&% 2(' % 2 � % 4
���! #" i 0�$&%)% 2(' %)% 2 � %)% 4
���! #"�* 0,+ 2.- 20/ 4 1 �2�! 3" i 0,+ 20-�2�/ 4
���! #" * 0,+ 2.- 20/ 4 1 �2�! 3" � 04+ 20- 20/ 4
���! #" � 0,+ 2.- 20/ 4 1 �2�! 3"65 0,+ 20- 20/ 487 9:�2�
 #"<; 0,+ 2�- 2./ 4
���! #" � 0,+ 2.- 20/ 4 1 �2�! 3" \ 04+ 2�- 2./ 4=7 �2�
 #" ; 0,+ 2�-�2./ 4

139 c
:

Pierangela Samarati

Access Control Enforcement

“Foreign” Policies

� ����������� 3 � � � , � 8 �
	 � � 3 ��� � , � ���
���� �����:� � �
� ������� ��� � 3 � � � , � 8 �
	 � � 3 � � � , � ���
��������:� � �

Complete/Partial Evaluation

� The evaluation is accomplished by applying standard techniques to

the logic program

�
	 � �6�6� � �
 �6� � �
s.t.

�
is a black box������� � s.t.

�
is a black box

base predicated undefined at materialization time

���
�
�

partial eval.

140 c
:

Pierangela Samarati

Elementary Policy Specification

Closed Policy: �
Open Policy: � ����� � � �����
	

Inheritance: � " # �

� � 780:9 2<; 2 = 4 1 0 9 % 2<;82 = 4 2 9 � 9 % 2 0 9 2<;82�= 4 1 0:9 2L; % 2�= 4 2<; � ; % 2
0:9 2<;82�= 4 1 0:9 2L;82 = % 4 2�= � = % J

Denial Takes Precedence: � � � �

Most Specific Takes Precedence:

��� �

0 � �� " # � �
�����

�
� " # � 4

Strong and Weak Authorizations: � �� ����� � �
� ����� � � ������ ��	! � �
����� ��	!

141 c
:

Pierangela Samarati

Algebra for composing policies

Supports� Heterogeneous policies: algebra constructs, or policy ids interpreted

by wrappers
� Unknown policies: policy ids unbound in the environment
� Interference: controlled by the closure construct
� Expressiveness: operators of the algebra
� Different abstraction levels: component-based approach
� Formal semantics: exploited to reason about properties

Future work includes

� Administrative policies
� Incremental approaches to enforce changes to component policies
� Mechanized policy validation
� Assessment of different partial evaluation techniques

142 c
:

Pierangela Samarati

Access control in open systems

In the global infrastructure

� need to interact with remote parties and access remote resources

� accesses as (action,object) limiting. E.g., service

� relationships with authentication may change

– in some cases authentication not even wanted (anonymous

transactions)

– in an open system like Internet new users (not known at the

server) can present requests
� group and role administration may not be centralized
� we may not know our users in advance

� � access control based on digital certificates (credentials)

143 c
:

Pierangela Samarati

Policy maker & Co.

Some models (e.g., Policy Maker, Referee, Keynote) based on concept of

trust management

� Use credentials that directly authorize actions � combine

authentication and access control

� noindent Assume requests and access restrictions associated with

public keys (in contrast to principals)

Requests
� ��� � ��� ��� � � �6� � ��� ����� REQUESTS actionstring

� � ��� �#��� ��� �!� �6� � ��� ��� � public keys requesting action

� actionstring application-dependent description of the action

144 c
:

Pierangela Samarati

Policy maker – 2

Access restrictions (security policies) stated through

Assertions

source ASSERT authoritystruct WHERE filter

� source grantor of the authorization (either the local policy or the public

key of a third party)

� authoritystruct public key to which privilege is granted

� filter condition that actionstring must satisfy for the assertion apply

authoritystruct and filter can be specified regular expression checkers,

ad-hoc extensions, or programming languages

145 c
:

Pierangela Samarati

Policy maker – 3

Example of assertions

� policy ASSERTS

pgp:“0xf0012203a4b51677d8090aabb3cdd9e2f”

WHERE PREDICATE=regexp:“(From:Alice) &&

(Organization: BobLabs)”

the specified (Alice’s) key can sign message originating from Alice

within BobLabs

� policy ASSERTS

pgp:“0xf0012203a4b51677d8090aabb3cdd9e2f”

WHERE PREDICATE=regexp:(Organization: BobLabs)”

the specified key (belonging to Security CA) can create certificate in

the name of the company

146 c
:

Pierangela Samarati

Policy maker – 4

Note The trusts in principal’s key is embedded in the policy

� Good: does not require external authorities

� Bad: requires public key management must be dealt with locally

Drawbacks:

� specification of authorizations for public keys not always meaningful

and difficult to manage

� authorizations not always easy to understand

� specifications in programming languages not easy to control

147 c
:

Pierangela Samarati

A more general approach supporting certificates

Allow users to present digital certificates, signed by some authority
trusted for making a statement, and can

� bind a public key to an identity (identity)

� bind a public key or identity to some properties (e.g., membership in
groups)

� bind a public key or identity to the ability of enjoying some privileges
(authorization)

The server can use certificates to enforce access control.

Certificate management relates to the context of

� Certification Authorities

� Public Key Infrastructure

� Trust Management

148 c
:

Pierangela Samarati

Access control in open based systems

The way access control is enforced may change

� What users can do depend on assertions they can prove presenting

certificates

� Access control does not return “yes/no” anymore, but responds with

requirements that the requestor must satisfy to get access.

Not only the server needs to be protected

� Clients want guarantees too (e.g., privacy)

Can introduce some form of negotiation.

149 c
:

Pierangela Samarati

Platform for Privacy Preference (P3P)

Proposal of the W3C for establishing privacy preference

Goal provide a protocol to express privacy practices in a standard format

that can be retrieved automatically and interpreted easily by user agents

� Policies expressed as XML documents.

� Each URL may have its own policy (at most one)

������������������ ��������������
content

�������������������������������� ��������������
content

Service User agent

Request for content

P3P proposal

PUID and agreement ID

First time visit

Service User agent

PUID, agreement ID, and
request for content

Follow up visits

150 c
:

Pierangela Samarati

Platform for Privacy Preferences (P3P) – 2

P3P proposes a “dictionary” with which Web sites can communicate the

privacy practice used for the data

It distinguishes

� categories of data (e.g., contact information, identifiers,

demographical data, navigational data, ...)

� intented use (e.g., to complete the activity, site personalization,

research, contact the user, other purposes, ...)

� recipient (e.g., the site and its partners, organizations that follow the

same privacy practices, others)

Has encountered objections (users sendomly would change the defaults

values....)

151 c
:

Pierangela Samarati

An approach to credential-based access control

Credential-based access control

� Parties can present digital certificates stating the identities or

properties of the parties

Issues to be addressed

� Expression of access control restrictions
� � language

� Communication of access control restrictions to be satisfied

- Safeguard privacy of the involved parties
� avoid unnecessary release of certificates and information
� avoid leakage of access control policies and information� � filtering and renaming of policies

152 c
:

Pierangela Samarati

Basic concepts

Network composed of different parties that interact with each other

� to offer services (servers)

� to require services (clients)

Each server has an associated set of services it provides.

Each party has an associated portfolio of properties that the party can

submit in order to obtain (or offer) services.

� declarations: information uttered by the party and not certified by any

authority (e.g., identity, address, hobbies)

� credentials: digital certificates
� � ��� �

- � : signed content

-
�

: public digital signature verification key

153 c
:

Pierangela Samarati

Credentials

We assume a semi-structured organization of credentials

Credential term: expression of the form credential name(attribute list)

- credential name: name of the credential

- attribute list: list of elements of the form “attribute name=value term”

Example

� driver-license(name=“John Doe”)

� driver-license(name= �)

� enr certificate(issuer= � ,student id=“John Doe”,university= �).

154 c
:

Pierangela Samarati

Portfolio abstraction

Partial order � � defined on portfolio by collecting

� declarations into classes representing named sets of properties (e.g.,

“demographic data” or “personal data”)

� credentials into abstractions

MastercardVisa Amex

Credit_card_info

mc_expdatev_expdatev_number a_expdatea_numbermc_number

Personal_cardsWork_cards

Membership_cards

BlockbusterAAAACM_cardIEEE_card

� � can refer to a set of declarations/credentials with a single name.

155 c
:

Pierangela Samarati

Services

Define the functionalities offered by a server.

Each service characterized by a name and a set of parameters (values).

Service terms have the form service name(attribute list)

- attribute list: list of pairs “attribute name=value term”.

E.g.��������� �
	���
 ����	�� �
proceedings

��������� �
CCS

������� � �
2000

�
Services may have associated facets that capture additional, or

alternative (polymorphic behavior), functionalities

E.g.,

� service: flight-reservation

� facets: seat assignments, lunch choices, !�!�!

156 c
:

Pierangela Samarati

Service abstraction

Services can be grouped into classes
� � partial order � ���

� refer to groups of services with a single name
� model gradual access to services

Abstractions can be defined on values
� � partial order � �

view_abstract

browse

library_access

print new_user new_corporate_member

new_registration

Digital_Library

buy

journalproceedings

material

search_for view_toc

article book

Given ground service terms �
� ��� � �

and �
����� � �

, �
� ��� � � � ���	�

����� � �
iff

1) �
� � ���
�

�
, and 2)

�
“ �

� �
” in

� �

“ �

� � �
” in

� �
s.t.

� � � �
�

Example��������� � ����� � � ������� � 	���
 ����	���� � � ����� ����� � �
 � � ������������ �
	���
 ����	���� � � ����� ����� � �
 � � ���
��������� �
	���
 � ��	���� � � � � ������� � !

157 c

Pierangela Samarati

Requirement specification language – 1

Logic language. Basic predicates:
� credential: credential(� ���) true iff the current state contains

credential � verifiable with key
�

.
� declaration: declaration(

�
) true iff the current state contains

declaration
�

, where
�

is of the form “att name=att value”.
� cert authority: cert authority(� � � � � �

) states that the party trusts
certificates signed by authority � � whose public key is � � �

.
� A set of non predefined state inquiry predicates that evaluate

information stored at the site

- Persistent state (e.g., user profiles)

- Negotiation state (e.g., current service)
� A set of non predefined abbreviation predicates
� A set of standard built-in math predicates, including

� �
	� ���
158 c

Pierangela Samarati

Requirement specification language – 2

Three classes of rules:

� abbreviations: define “macros” that can be used in other rules

� service accessibility: define restrictions that the other party (client)

has to satisfy to be granted access to services

� release: define restrictions on credentials and information that can be

released to the other party

159 c

Pierangela Samarati

Abbreviation rules

Define “macros” that can be used as a shorthand for disjunctions or

conjunctions of conditions (those in the body of abbreviation rules).

� ������ � �
	�� �� 	�� ��
�
�
 � ����� ������
� � is an abbreviation predicate

� ��� ��� � � ��
�
�
 ��� , are basic predicates.

Example

1. ������� �"!$#&%'%�() * +-, .�/1032547684�9:�;�����"<
=?> @A) B +DCFEHGI6 J76K�&LM2N/O�PB�CQ!�#R%'%�(S) * +
2. ������� �"!$#&%'%�() * +-, .�/1032547684�9:�;�����UT VW@FXY@1VZ@�<�[I@1\^]_!$#&%'%�(S) * +
3. J76"���`0`��Ja4�2b�PcdC:e +�, 0f/&6g9 4�E�9ihH�j6"�k9"l'�mcnCoe +
4. J76"���`0`��Ja4�2b�PcdC:e +�, J76"���`0`��Ja4�2b�qp$Coe r"+DC

036K/�.O/&��9o�s4�2t�Wu?/?2k�$�Av&G 9w� �qxy\z\z{�@�V:) p$C|T V}xy<'[FxbTS=&~�) cnC}�R@f(�) e +DCoe r +

160 c

Pierangela Samarati

Service accessibility rules
� prerequisite rules state credentials and declarations that client must

submit to have their access requests considered

� requisite rules state credentials and declarations that client must

submit to have their access request granted

� facet rules state credentials and declarations that client must submit

to enable specific features of a service

Distinction between prerequisites and requisites allow requests of

preliminary credentials and declarations

161 c

Pierangela Samarati

Service requisite rules

State credentials and declarations that the client must submit to be

granted the service.

���������
	�� ����
�� ��� ��� ��� � �'	'� �� 	�� ��
�
�
 � ��� � ��-���
� � ��� � is a service term

� ��� , � � � ��
�
�
 ��� are basic predicates.

Example

1. GZ/&6��O� 0I/ 6K/��OG1�wJ76"� ��9^� +}+ , .O/�03254768419o�;��� �q[I#&T�(�Vzx��O!��) � accept” +D]
2. GZ/&6��O� 0I/ 6K/��OG1�wJ76"� ��9^���W#�{�V}<'=R~K) �jCZ(O@�=&V:) * +}+ , 07EHGw9w��� /&6 4! 2 �s4�9:�;�����#" + C

GfE�uAG}076"��J�9o�;�$� �"\z{$%
\z[FV}xb% @1Vo) " CW(�@�=&Vo) * C��W#O{'V}<'=R~�) � + C
03E�6m6 l^/�436W�PB +DC}* $ B]

162 c

Pierangela Samarati

Requisite propagation

A service is subject to all prerequisite/requisite/facet requirements

specified at more general levels
� �

prerequisite/requisite/facet requirements must propagate from more

generic to more specific service terms.

Example

A request � � ����� ���	��

������� � "CACM" �	��� ��� � "1999" � will be subject to

both

1. GZ/&6��O� 0I/ 6K/��OG1�wJ76"� ��9^� +}+ , .O/�03254768419o�;��� �q[I#&T�(�Vzx��O!��) � accept” +D]
2. GZ/&6��O� 0I/ 6K/��OG1�wJ76"� ��9^���W#�{�V}<'=R~K) �jCZ(O@�=&V:) * +}+ , 07EHGw9w��� /&6 4! 2 �s4�9:�;�����#" + C

GfE�uAG}076"��J�9o�;�$� �"\z{$%
\z[FV}xb% @1Vo) " CW(�@�=&Vo) * C��W#O{'V}<'=R~�) � + C
03E�6m6 l^/�436W�PB +DC}* $ B]

163 c

Pierangela Samarati

Requisite propagation rules
� � ����� be a set of requisite rules specified at a server

� � ��� � be a service term

The requisite propagation rules � ��� ��� ��� � � � ����� � for a � ��� � and � ����� :
���������
	�� ����
��
	 ��� ��� ��� �

� � �����
	 � ���
�� ���S	���� 	R��� ��
�
�
 � ���������
	�� ����
�� ���j����� � ���
� � 	���� 	��
�
�
 � �j� ��� ��� are all and only the ground instances of the

service terms that occur in � ����� , such that the variables are bounded

to leaves of the value hierarchy and � ��� �
� ��
 � � ��� � � .

164 c

Pierangela Samarati

Requisite satisfaction
� � ����� : server’s policy

� � : server state

� � ��� � : service

A set of credentials/declarations � ��� � satisfies the requisites for service
� ��� � w.r.t. server state �

iff

� ������� � ��� ��� ��� � � � ����� � � � � � ��� � � � ���������
	�� ����
��
	 ��� ��� ���

165 c

Pierangela Samarati

Server’s policy filtering mechanism

Given a service request � ��� �

1. Select all the rules and abbreviations that apply to a given request

2. Simplify the rules by evaluating state enquiry predicates and built-in

math predicates when possible
� atoms that are satisfied are simplified away.
� atoms that are not satisfied fail and make a rule not applicable.

3. Rename atoms in partially evaluated rules

4. Send the resulting filtered and renamed policy to the client

166 c

Pierangela Samarati

Server’s policy filtering mechanism – Example

Policy

1. G|/?6��O�s0f/ 6K/ ��GF�WJ76"����9^� +|+�, .O/1032547684�9:�5�$���"[I#RT�($V}x���! �i) � accept” +]
2. G|/?6��O�s0f/ 6K/ ��GF�WJ76"����9^� �w#�{'V|<
=&~K) � CW(�@�=&Vo) * +}+ , 07EHGW9 � � /?6 4� 2 �s4�9o�;�����#" + C

GIE�uHG}076"��J�9o�;��� �q\z{�% \z[^Vzxb%M@�V:) " CW(O@�=?Vo) * C �W#�{�V}<
=&~K) � + C
07E�6m6 l^/�476w�PB + C|* $ B�]

Request J?6"����9^���W#�{�V}<
=&~K) "CACM" CZ(O@�=?Vo) "1999" +
Relevant rules

1. G|/?6��O�s0f/ 6K/ ��G�� �wJ76"� ��9^���W#�{�V}<'=R~g) "CACM" CZ(O@�=?Vo) "1999" +}+ ,
G|/?6���� 0f/ 6K/��OGF�WJ76"����9^� �W#O{'V|<
=R~�) "CACM" CW(�@�=&Vo) "1999" +}+MC
GZ/&6��O� 0I/ 6K/ �OG1�wJ?6"����9^� +}+]

2. G|/?6��O�s0f/ 6K/ ��GF�WJ76"����9^� �w#�{'V|<
=&~K) "CACM" CZ(�@�=&V:) "1999" +|+�,
07EHGw9w��� /&6 4! 2 �s4�9:�5�$�$�#" + C|GIE�uHG}076"��J�9o�;��� �q\z{�% \z[^Vzxb%M@�V:) " CZ(O@�=?Vo)
"1999" C��W#O{'V|<
=R~g) "CACM" + C 07E�6m6K/&��9 l^/�476w�PB + C 1999 $ B]

3. G|/?6��O�s0f/ 6K/ ��GF�WJ76"����9^� +|+�, .O/1032547684�9:�5�$���"[I#RT�($V}x���! �i) "accept" +]

167 c

Pierangela Samarati

Server’s policy filtering mechanism – Example (’ed)

Assume � contains the facts:
� 07EHGw9w��� /&6 4! 2 �s4�9:�5�$�$� "ACME" +
� GfE�uHG}076"��J�9o�;��� �q\}{$% \}[FVzxt% @�V:) "ACME" CW(�@�=&Vo) "1999" C��w#�{'V|<
=&~K) "CACM" +
� 07E�6m6K/?��9 l^/�436W� ������� + .

Then

GZ/&6��O� 0I/ 6K/ �OG1�wJ?6"����9^���W#�{�V}<
=&~K) "CACM" CZ(O@�=?Vo) "1999" +|+�,
03EHGW9 � � /&6 4� 2 �s4�9o�;����� " +DC}GfE�uAG}076"��J�9o�;�$� �"\z{$%
\z[FV}xb% @1Vo) " CW(�@�=&Vo)
"1999" C �W#�{�V}<
=&~�) "CACM" + C 03E�6m6K/?��9 l^/�476W�qB +DC 1999 $ B]

evaluates true and the policy is simplified as

GZ/&6��O� 0I/ 6K/ �OG �j�WJ76"����9I� �W#O{'V}<'=R~g) "CACM" CW(�@�=&Vo) "1999" +}+�,
GZ/&6��O� 0I/ 6K/��OG^�WJ76"����9^� +|+]

GZ/&6��O� 0I/ 6K/ �OG1�wJ?6"����9^� +}+ , .�/1032547684�9:�;�����"[I#&T�($V}x���! �i) "accept" +]

168 c

Pierangela Samarati

Service prerequisite rules

Define preconditions that the client must satisfy to have its request

considered.

����� ���
	 � � ��������
�� ��� ��� ��� � �'	'� �� 	�� ��
�
�
 � ��� � ��-��� �
��	'� �� 	�� ��
�
�
 � � 	
� ���� �

� � ��� � is a service term

� ��� , � � � ��
�
�
 ��� , are basic predicates

� ��� , � � � ��
�
�
 ��� , are either state predicates or math built-in.

Example

1. GZ/&6��O� 0I/ J?6K/?6K/��OGF�w2 ��u?68436gl 4`0F0f/FGZG�� +}+-, .�/1032547684�9:�;�����q~b# ��xy<) * C}T =&\z\
	 �) B +� EHGI6 J76K�&L 2k/��q~b# ��xy<) * C}T =&\z\
	 �) B +]
2. GZ/&6��O� 0I/ J?6K/?6K/��OGF�w2 ��u?68436gl 4`0F0f/FGZG�� +}+-, J?6"���`0`��Ja4�2t�Pp$C:e
O+DC

036K/�.O/&��9:� 4O2t�q4! 2 �s4�9o�;�$���Pxy\z\}{$@�V:) p�CQ{'\Z@�Vo) � CQ{'\Z@�V �R@I(�) e ��+ C:e
 + C� 6K/Fv �5Gw9i68419o�;���HGH�q\}{$% \}[FVzxt% @�V:) p�+]
169 c

Pierangela Samarati

Facet requisite rules

State credentials and declarations necessary to enjoy specific facets.

��� 	 � � ���
�� ��� ��� � � � � � �'	'� �� 	�� ��
�
�
 � ��� � ��-���
� � ��� � is a service term

� �
is the name of a facet associated with �

� � � , � � � ��
�
�
 ��� are basic predicates.

Example

�"4`0f/I9 6K/��OGF�Wu�E�l$�q> = �Q@�V}xg=R~) proceedings CQ[I#O<$Xo) � CQ=&\z\D) " + C �'xy\z[f#�{'< �i+ ,
036K/�.O/&��9o�s4�2t�P4�9 9 0f/&6g9o�NL$0F4�9w/��qxy\z\z{�@�VD) � C:= � �Q@1< �
=?<��i) � CQ[f#�<�XY@�VW@�<'[f@A) � +Ze � +DC
03E�6m6K/?��9 03EHGW9 � � /&6 � � + C
4`0^076K/1.$�k9 /�. �j6Kv�4��R���f/?6W�q[f#�> TS=?<�(�) � CQ=&\z\Z# [1xy= �Dxt#�<) " + C
J76"���`0`��Ja4�2b��� Coe � +]

170 c
	

Pierangela Samarati

Release rules

Regulate disclosure of declarations and credentials in the party’s portfolio

� � � � ����� � �
�� ��� � � �
	�� �� 	�� ��
�
�
 � ��� � ������
� � is either a credential term � ��� � or a declaration

�
� � � , � � � ��
�
�
 ��� , are basic predicates

Example

1. 6K/72N/�4HGZ/ 6K/��OGF�q[^VZ@ �'x � [1=&V � x <$XY#�+�, 07E�6m6K/&��9 G|/?6���� 0f/��Wu�E�l$� +}+ C
.O/1032547684�9:�5�$���"<$# �
xy\}[1~b#O\z{'VW@`) "accept" +]

2. 6K/72N/�4HGZ/ 6K/��OGF� � / � u&/?6KGIhR��J 0F476 .S�Pxy\z\}{$@�Vo) * +}+�,
036K/�.O/&��9:� 4O2t�"0I/&6g9:�NL /�. G|/?6��A/&6 �Pxy\z\}{$@�Vo) * C:\|@1V��R@�VD) � +DC:e +DC
03E�6m6K/&��9 G|/?6��`/?6W��� +DC^J76"���a0A��J34O2b� * Coe +M]

171 c
	

Pierangela Samarati

Release requirements propagation

An object is subject to all release requirements specified at more general

levels
� � release requirements must propagate from more generic to more

specific terms.

Let

� � ����� be a set of release rules specified at a party

� � be an object (credential term or declaration)

The release propagation rules � � � ��� � � ����� � for � and � ����� :
� � � � ��� ��� � � 	 ��� � � ��� � � ����� ����
�� ��� 	 � ��
�
�
 � ��� � � ����� � �
�� ��� � �

� � 	 ��
�
�
 � �
� are all and only the ground instances of the terms that

occur in � ����� , such that the variables are bounded to leaves of the

value hierarchy and � � � � � , for � � � ��
�
�
 ��� .

172 c
	

Pierangela Samarati

Release requirements satisfaction
� � ����� : party’s release policy

� � : party’s state

� � � � � : a set of credentials/declarations � � � � received

A credential/declaration � is releasable w.r.t. � and � � � �

iff

� ����� � � ��� ��� � � ����� � � � � � ��� � � � � � � � ��� ��� � � 	 ��� � .

173 c
	

Pierangela Samarati

Client’s policy evaluation

Upon reception of policy � � ��� � � � ��� � � ����� � � ��� � � � ��� � to be satisfied

1. search the portfolio for a set of credentials/declarations � ��� � such that
� ����� � � � ��� � � ����� � � ��� � � � ��� � � � � � � � � � � �����
	 � ���
��
	 ��� ��� ���

2. Use release rules to prune the alternative sets � � 	 ��
�
�
 � � � � of

credentials obtained

- may send � � � to the server only if ��� � � � � ��� � � 	 ��� � holds for all
� � � � � .

- possibly send counter-requests to the server

174 c
	

Pierangela Samarati

Client-Server Interplay

service request

requirements R request

prerequisites P

requirements R’ counter-req.

R’

R

service granted

ServerClient

request for prerequisites P
Portfolio

declarations
credentials/

negot.-dep.
permanent/

State

Policy

information
release

declarations
credentials/

negot.-dep.
permanent/

State

Policy

services/
info. release

Portfolio

175 c
	

Pierangela Samarati

Correctness and complexity

Correctness: The filtering and renaming process preserves the original

policy

Theo For all � ����� , � ��� � , � , renaming � ��� � � � � � � � � ����� � � ��� � � � ��� � ,
and sets � ��� � of credential and declaration atoms,
� ������� � � � ��� ��� � � � ����� � � � � � ��� � � � ����� ���
	 � � �
��
	 ��� ��� ��� � �

� � ��� � � � ��� � � ����� � � ��� � � � ��� � � � ��� � � � ��� �����
	 � ���
�� 	 ��� ��� ���
It ensures

� correctness of access enforcement

� ability to grant the service upon reception of credentials/declarations

from the client

Complexity:
� � � � ��� � � , where � � � � ����� ��� � � � .

176 c
	

Pierangela Samarati

Credential-based access control

Still considerable work to be done on credential-based, including

� Strategies for selecting credentials/declarations to be released

� Evaluate privacy of server’s policy

� Extend filtering/renaming features (e.g., support actions)

� Extend negotiation model and dialog

� Determining retrieval of digital certificates not stored remotely

177 c
	

Pierangela Samarati

Controlling access in open systems

Logic-based languages not always accepted (may be too complex for

end-users)

Need to find a trade-off between

� complexity, and

� expressiveness

– support for profile-based and assertion-based authorizations

– support different kinds of rules (e.g., permissions and denials)

– support for dynamic conditions and “interactive” access control

178 c
	

Pierangela Samarati

An simple but expressive access control language

Problem of protecting data published on the Web.

� producers: organizations that collect data, process them, and prepare

them for distribution;

� distributors: data archives (or information brokers) that collect data

from various producers and makes them available on the Web.

� user community: wants to access data

Problem: Develop an access control system that producers and

distributors can use to state and enforce restrictions on the data they

make available to different user populations on the Web.

179 c
	

Pierangela Samarati

Characterization of subjects
� User: human entities that can connect to the system and make

requests. Each user has associated an identifier (usually the user’s

login), with which the user is referred to in the system.

� Purpose: reason for which data are being requested and will be used

(e.g., Commercial, Teaching, Research consultancy)

� Project: named activity registered at the server, for which different

users can be subscribed, and which may have one or more purposes

(e.g., Nesstar and Faster).

180 c
	

Pierangela Samarati

Subjects – Examples

Each subject making a request to the Faster server with a triple
�

user, project, purpose �
meaning user is making the access request for a given project and/or a

given purpose.

Some elements within the triple may remain unspecified.

Examples

� �
tom.smith,Faster,research �

user tom.smith for research purposes within the Faster project.

� �
john.doe, ,commercial �

user john.doe for commercial purposes.

� �
, , � an anonymous user with undeclared project and purposes

181 c
	

Pierangela Samarati

Objects
� Datasets are the objects containing information whose access is

being protected. With respect to statistical data archives they can be

tables storing micro or macrodata.

� Metadata represent information associated with datasets. Metadata

are not part of the dataset content. They provide additional contextual

information explaining, for example, to which study a dataset is

referred, how it has been obtained, by whom, and so on.

182 c
	

Pierangela Samarati

Actions

Kind of access (operation) that the requesting subject wishes to perform
on the object.

Specific actions may vary depending on functionalities provided on
specific kinds of datasets.

We can distinguish three main classes of actions:
� Browse: to visualize and query metadata associated with datasets.

With the browse facility, users can walk through the metadata in order
to choose the actual dataset they are interested in.

� Analyse-on-line: to query datasets. On-Line analysis includes a set of
pre-defined operations that perform on-line calculations on selected
data. Available operations may vary depending on kind of dataset
under consideration.

� Download: to download data from the server. It allows users to save
whole datasets on their local machine to perform off-line analysis.

183 c
	

Pierangela Samarati

Access requests

Access requests are triples of the form
�
user,project,purpose � , action, object

Examples

� �
tom.smith,Faster,research � , download, dataset1

user tom.smith requires to download dataset1 for research

purposes within the Faster project.

� �
john.doe,Nesstar, � , download, dataset1

user john.doe requires to download dataset1 for use within the

Nesstar project.

� �
, , � , browse, meta dataset5

an anonymous user with undeclared project and purposes requires to

browse metadata meta dataset5

184 c
	

Pierangela Samarati

Subject information

The ACU server recognizes only users and projects registered at the

server.

Each user and project are characterized by:

� identifier that allows the server to refer to the user (project, resp.).

� profile defines the name and value of some properties that

characterize the user (e.g., name, address, occupation) or the project

(e.g., title, abstract, or sponsor).

Intuitively, profiles are at users and projects what metadata are at

datasets.

We view profiles as semi-structured documents (XML or RDF like).

185 c
	

Pierangela Samarati

Examples of users and projects profiles

User profile

Name

Login

Title/Position/Job

Address

Email

Telephone

Validation information

Groups

Purposes

Agreement

On line agreement

Registration Date

Project profile

ID

Title

Abstract

Objectives

Period

Purposes

Sponsor

Leaders

Participants

Responsible institution

186 c
	

Pierangela Samarati

Users, projects, and purposes abstractions

Abstractions can be defined within the domains of users, projects, as well

as purposes.

Abstractions allow to group together users (projects, and purposes, resp.)

with common characteristics and to refer to the whole group with a name.

Groups need not be disjoint and can be nested.

187 c
	

Pierangela Samarati

Subjects abstractions – example

Commercial NonCommercial

Academic Nonprofit

Users

User Hierarchy

Commercial NonCommercial

Economics Marketing Education

Projects

Project Hierarchy

NonCommercial

Research PersonalInterest CommercialResearch

Consultancy PureResearch

Purposes

Purpose Hierarchy

Commercial

188 c
	

Pierangela Samarati

Objects organization
� Datasets. For the time being, we consider access to whole datasets

only (i.e., an access to a dataset is either allowed or denied).

� Metadata. They can be in the form of textual or semistructured

documents (XML/RDF).

Metadata are files that can be associated with each dataset.

A metadata document can then be referred to either by its identifier or, via

function META, by the identifier of the dataset with which it is associated.

Bijective function META() makes the association between a dataset and its

metadata.

E.g., META(dataset1) is the metadata file associated with dataset dataset1

189 c
	

Pierangela Samarati

Metadata querying

Properties within a metadata document are referred by means of path

expressions, expressed, for instance, with the XPath language.

� Path expression: sequence of element names or predefined functions

separated by character / (slash): � 	�� ��� �
�
�
 � � � .

A path expression � 	�� ��� �
�
�
 � � � on a document tree represents all

the attributes or elements named � � that can be reached by

descending the document tree along the sequence of nodes named

� 	 ����� ��
�
�
 ��� �
	 	 .
Example

�
META(data1)/codeBook/stdyDscr/stdyInfo/subject

subject elements describing the data collection’s intellectual content

that are children of stdyInfo elements, that are children of the

stdyDscr elements, and so on, in document META(data1).

190 c
	

Pierangela Samarati

Datasets and metadata abstractions

Datasets also can be organized in a hierarchical structure, defining sets

of datasets that can be collectively referred together with a given name.

Metadata are associated only with specific datasets, not with abstractions

on them, and no hierarchy is explicitly defined on metadata. However, the

abstraction hierarchy defined on the data reflects in an abstraction

hierarchy on the corresponding metadata.

Data

Standard_Dataset

Free_Dataset Restricted_Dataset

ONS_Dataset

META(Restricted_Dataset)

META(ONS_Dataset)META(Standard_Dataset)

META(Free_Dataset)

META(Data)

191 c
	

Pierangela Samarati

ACU language desiderata

The ACU language should ...

� support access restrictions based on abstractions

� support access restrictions based on conditions on meta-data or on

local user profile conditions.

� support access restrictions related to signed agreements, and other

fulfillments to be accomplished via manual procedures.

� support both regulation in the form of authorizations and restrictions.

� have a declarative form.

� be simple and expressive.

� be easy to use to nonspecialists in the field.

192 c
	

Pierangela Samarati

ACU rules

Access control rules are usually based on triples stating which subjects

can exercise which action on which object .

Two kind of access control rules:

� Authorizations specify permissions for subjects to access a (set of)

datasets/metadata in a given mode.

� Restrictions specify conditions that must be satisfied for a given

access to be granted.

193 c
	

Pierangela Samarati

Restrictions

Specify requirements that must all be satisfied for an access to be

granted.
�
subjects � CAN

�
actions � �

objects � ONLY IF
�
conditions �

where:

� subjects identifies the set of subjects to which the restriction refers

� actions is the action (or class of actions) to which the restriction refers

� objects identifies the set of objects (either datasets or metadata) to

which the restriction refers

� conditions is a boolean expression of conditions that every request to

which the restriction applies must satisfy.

Lack to satisfy any of the restrictions that apply to a given request implies

the request will be denied.

194 c
	

Pierangela Samarati

Authorizations

Specify permissions for accesses.
�
subjects � CAN

�
actions � �

objects � [IF
�
conditions �]

where subjects, actions, and objects have the same syntax and

semantics as in restrictions, and
�
conditions � is a boolean expression of

conditions whose satisfaction authorizes the access.

An access is granted if there is satisfaction of at least one of the

permissions that apply to the given request and no restriction is violated.

195 c
	

Pierangela Samarati

Subjects

Specified by means of a

subject expression: a boolean formula of terms that evaluate conditions

on the user, project, and purpose of the request. Conditions can

evaluate the value of the elements, their membership in defined

groups/categorizations, or properties in their profiles.

Expressions can make use of the following keywords

� user indicates the identifier of the person making the request

� purpose indicates the purpose declared by the user for the request

� project indicates the project declared by the user for the request

196 c
	

Pierangela Samarati

Subjects – Example
� user/citizenship=EC AND (project/sponsor=EC OR purpose IN

research)

requests made by users who are European citizens and intend to use

the data for research purposes or within an EC funded project

� user IN NonCommercial-users AND purpose IN research

requests made by users belonging to group NonCommercial-users

who intend to use the data for research purposes

� user IN NonCommercial-users AND purpose IN research AND

project/sponsor=EC

requests made by users belonging to group NonCommercial-users

who intend to use the data for research purposes within an EC

funded project

197 c
	

Pierangela Samarati

Simplified (indexed) subject expressions

For authorizations applicable to all users within a given group or that

request access for a given project or purpose (or category thereof), the

group, project, and/or purpose element can be explicitly factorized out,

bringing a more readable and indexable subject expression.

A subject expression of the form

user IN group-id AND project IN project-id AND purpose IN purpose-id

AND subject-expression

can be turned into an indexable expression of the form

group-id OF project-id PROJECTS FOR purpose-id PURPOSES WITH

subject-expression

where the clauses “ OF project-id PROJECTS”, “ FOR purpose-id

PURPOSES”, and “WITH subject expression” are optional and can be

omitted.

198 c
	

Pierangela Samarati

Simplified (indexed) subject expressions – examples

� user IN NonCommercial-users AND purpose IN research
� � NonCommercial-users FOR research PURPOSES

� user IN NonCommercial-users AND purpose IN research AND

project/sponsor=EC
� � NonCommercial-users FOR research PURPOSES WITH

project/sponsor=EC

� user IN NonCommercial-users AND project IN EC-sponsored
� � NonCommercial-users OF EC-sponsored PROJECTS

199 c
	

Pierangela Samarati

Objects

object-id [WITH conditional-object-expression] where:

� object-id is

– the identifier of a dataset (or group of datasets)

– the identifier of a metadata document (or group of them) with

possibly associated an Xpath expression.

� conditional-object-expression boolean formula of conditions that can

evaluate membership of the object in categories, values of properties

on metadata and so on. Can make use of the following keywords:

– dataset indicates the identifier of the dataset to which access is

requested

– metadata indicates the identifier of the metadata document to

which access is requested or associated with the dataset to which

access is being requested.

200 c
	

Pierangela Samarati

Objects – Examples

Some examples of objects are as follows:

� Free Datasets WITH metadata/producer=ACME

all datasets in the Free Datasets class produced by ACME (where the

produced in specified as property in the associated metadata)

�
META(Restricted Datasets)//question text

the text of the question text element of the metadata documents

associated with datasets in the Restricted Datasets set.

201 c
	

Pierangela Samarati

Conditions

Element conditions defines conditions that must be satisfied for the

request not to be rejected (as in the case of restrictions) or for the access

to be granted (as in the case of authorizations).

Two kinds of conditions

� Static conditions evaluate membership of subjects and objects into

classes or properties in their profiles and associated metadata.

� Dynamic conditions are conditions that can be brought to

satisfactions at run-time processing of the request. They include:

Agreement acceptance, Payment , Registration, Form filling .

For each of them we assume the existence of a procedure that perform

the control and possibly trigger the necessary actions.

202 c
	

Pierangela Samarati

Examples of predicates
� agreement(id, �): checks if user id has accepted agreement � , and if

not presents the user with the agreement. It returns true if the

agreement has been accepted.

� register(id): checks if user/project id is registered, and if not starts

the registration procedure. It returns true if the id was registered or

the registration has been successfully completed.

� fill in form(id,form): checks if user id has filled in form form, and if not

presents it to the user. It returns true if the user has filled the form.

� payment(id 	 ,id �): checks if user id 	 has paid to access object id � ,

and if not starts the payment procedure for the user. It returns true if

the user had paid or the payment procedure completes successfully.

203 c
	

Pierangela Samarati

Keywords, predicates, and reserved identifiers
Keywords CAN , WITH , IF , ONLY IF , IN , AND , OR , NOT , FOR , META, PURPOSES, PROJECTS

Predicates agreement(id, �) checks if user id has accepted agreement � , and if not presents the user with the agree-

ment. It returns true if the agreement has been accepted.

register(id) check if user/project id is registered, and if not starts the registration procedure for it. It

returns true if the user/project was registered or the registration has been successfully

completed.

fill in form(id,form) checks if user id has filled in form form, and if not presents it to the user. It returns true if

the user has filled the form.

payment(id � ,id �) checks if user id � has paid to access object id � , and if not starts the payment procedure

for the user. It returns true if the user had paid or the payment procedure completes

successfully.

Reserved user bounded to the identity (if defined) of the user making a request

identifiers project bounded to the project (if defined) specified by the user making a request

purpose bounded to the purpose (if defined) specified by the user making a request

dataset bounded to the identifier of the dataset to which access is requested

metadata bounded to the identifier of the metadata document to which access is requested or

associated with the dataset to which access is being requested.

204 c
	

Pierangela Samarati

Examples of ACU rules
� Users can access ADSN (anonymized data of Statistics Norway)

only if they are registered and they have a registered project

Users CAN download ADSN data ONLY IF register(user) AND

register(project)

� Question texts of market research should not be revealed to

competitors

Users CAN browse META(market-research)//questions ONLY IF NOT

user IN Competitors

� Free access to Category1 (except for commercial use) to registered

users

Users WITH purpose 	� “Commercial” CAN access Category1 IF

register(user)

205 c
	

Pierangela Samarati

Examples of ACU rules – 2
� Everybody can freely browse metadata

Users CAN browse META(data)

� Users can download Data ONS Dataset for a NonCommercial project

or (for a Consultancy project if they are agree to Consultancy

Condition)

Users OF NonCommercial PROJECTS CAN download ONS Datasets

Users OF Consultancy PROJECTS CAN download ONS Datasets IF

agreement(user, CC.Id)

206 c
	

Pierangela Samarati

Current directions in access control
� Policy composition

� Assertion-based access control

� “Interactive” access control

� Support for dynamic conditions

� Looking for flexibility and expressiveness ... but also simplicity and

manageability

OASIS (Organization for the Advancement of Structured Information

Standards) currently working on a standard for the specification of access

control policies.

207 c
	

Pierangela Samarati

